Skip to main content
Log in

Development of a Numerical Model for Simulating Transient Liquid Phase (TLP) Bonding Involving Two Solid–Liquid Interfaces that Concurrently Undergo 2D or 3D Migration

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new numerical model is developed for transient liquid phase (TLP) bonding involving two solid–liquid interfaces that concurrently undergo two-dimensional (2D) or three-dimensional (3D) migration in contrast to previous models in the literature where two solid–liquid interfaces are assumed to undergo one-dimensional (1D) migration. The developed model which incorporates variable diffusivity and conserves solute by using a unique hybrid explicit–fully implicit approach and an adaptable space discretization based on Murray–Landis transformation, respectively, is used to investigate the kinetics of the process and major predictions of the model are experimentally validated. It is found that in contrast to the case of 1D migration, despite matching material and bonding conditions, there is a transition from conventional symmetric solidification behavior to asymmetric solidification behavior such that the extent of isothermal solidification is consistently larger on the substrate in which curvature reduces along the direction of solute diffusion. Moreover, aside from what is generally known that the kinetics of isothermal solidification is controlled by diffusivity, equilibrium concentrations at the interface and initial substrate composition, this work shows that when the solid–liquid interface migrates in 2D or 3D, the kinetics is also significantly controlled by the type and degree of curvature at the migrating interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Davies, A. Johal, H. Davies, S. Marchisio, Int. J. Adv. Manuf. Technol. 103, 441–452 (2019)

    Article  Google Scholar 

  2. Y. Fang, X. Jiang, D. Mo, D. Zhu, Z. Luo, Int. J. Adv. Manuf. Technol. 102, 2845–2863 (2019)

    Article  Google Scholar 

  3. A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, K. Nakashima, Mater. Sci. Eng. 755A, 37–49 (2019)

    Article  Google Scholar 

  4. T. Lin, H. Li, P. He, H. Wei, L. Li, J. Feng, Intermetallics 37, 59–64 (2013)

    Article  CAS  Google Scholar 

  5. S.S.S. Afghahi, A. Ekrami, S. Farahany, A. Jahangiri, Philos. Mag. 94(11), 1166–1176 (2014)

    Article  CAS  Google Scholar 

  6. N. Sheng, J. Liu, T. Jin, X. Sun and Z. Hu: Philos. Mag., 2014, vol. 94(11), pp. 12, 19–34.

  7. J.E. Ramirez, S. Liu, Weld. J. 71(10), 365–376 (1992)

    Google Scholar 

  8. R. Asthana, J. Colloid Interface Sci. 158, 146–151 (1993)

    Article  CAS  Google Scholar 

  9. Y. Zhou, J. Mater. Sci. Lett. 20, 841–844 (2001)

    Article  CAS  Google Scholar 

  10. T.C. Illingworth, I.O. Golosnoy, V. Gergely, T.W. Clyne, Proc. IV Int. Conf. Temp. Capillarity 40, 2505–2511 (2005)

    CAS  Google Scholar 

  11. T.C. Illingworth, I.O. Golosnoy, J. Comput. Phys. 209(1), 207–225 (2005)

    Article  Google Scholar 

  12. B. Binesh, A.J. Gharehbagh, J. Mater. Sci. Technol. 32(11), 1137–1151 (2016)

    Article  CAS  Google Scholar 

  13. K. Bai, F.L. Ng, T.L. Tan, T. Li, D. Pan, J. Alloys Compd. 699, 1084–1094 (2017)

    Article  CAS  Google Scholar 

  14. M.I. Saleh, H.J. Roven, T.I. Khan, T. Iveland, J. Manuf. Mater. Process (2018). https://doi.org/10.3390/jmmp2030058

    Article  Google Scholar 

  15. A. Ghanbar, D.E. Michael, O.A. Ojo, Philos. Mag. 99(17), 2169–2184 (2019)

    Article  CAS  Google Scholar 

  16. J. Crank, The Mathematics of Diffusion (Oxford University Press, Oxford, 1975), pp. 112–118

    Google Scholar 

  17. W. Kass, M. O’Keeffe, J. Appl. Phys. 37(6), 2377–2379 (1966)

    Article  Google Scholar 

  18. M. Ghezzo, J. Electrochem. Soc. 120(8), 1123–1127 (1973)

    Article  CAS  Google Scholar 

  19. W.D. Murray, F. Landis, J. Heat Transf. 81(2), 106–112 (1959)

    Article  CAS  Google Scholar 

  20. O.C. Afolabi, O.A. Ojo, Int. J. Adv. Manuf. Technol. 110, 2295–2304 (2020)

    Article  Google Scholar 

  21. G.S.C.R. Houska, F. Dietrich, G. Subbaraman, Thin Solid Films 44, 217–231 (1977)

    Article  CAS  Google Scholar 

  22. K.A. Ellis, R.A. Buhrman, Appl. Phys. Lett. 74(7), 967–969 (1999)

    Article  CAS  Google Scholar 

  23. L. Cheng-Wu, X. Hong-Lai, G. Cheng, L. Wen-biao, J. Geophys. Eng. 15, 315–329 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from NSERC of Canada.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oluwadara C. Afolabi or Olanrewaju A. Ojo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 12, 2020; accepted February 22, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afolabi, O.C., Ojo, O.A. Development of a Numerical Model for Simulating Transient Liquid Phase (TLP) Bonding Involving Two Solid–Liquid Interfaces that Concurrently Undergo 2D or 3D Migration. Metall Mater Trans A 52, 2287–2297 (2021). https://doi.org/10.1007/s11661-021-06221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06221-9

Navigation