Skip to main content
Log in

Effects of Pore Geometry on the Fatigue Properties of Electron Beam Melted Titanium-6Al-4V

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Current percent-porosity based quantification of pores in additively manufactured parts does not provide information about the size, shape, and distribution of pores throughout a build. Such information is necessary to understand the conditions under which the part was printed as well as its mechanical reliability. This research, through a combination of fatigue testing and microstructural characterization demonstrates a method by which the internal porosity can be characterized and using the knowledge of the pores differing formation mechanisms to inform future design and build strategies. Though the test bars were printed under nominally identical conditions, ignoring lack-of-fusion, batch 1 had 34 pct fewer lenticular pores and 147 pct more spherical pores than batch 2 which shows that the actual print conditions of these parts varied substantially as would their as-printed mechanical reliability. To quantify this difference extensive optical, SEM, and EBSD metallographic studies were conducted on several samples from these bars as well as the fracture surfaces to gain an understanding of the porosity’s shape, size, and location. The comparison of these datasets along with knowledge of the pore’s evolution allows for the optimization of future build strategies and the more accurate prediction of the resulting as-built mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shunyu Liu and Yung C. Shin, Materials & Design 2019, vol. 164, pp. 107552–75.

    Article  CAS  Google Scholar 

  2. 2. Joakim Karlsson, Anders Snis, Håkan Engqvist and Jukka Lausmaa, Journal of Materials Processing Tech. 2013, vol. 213, pp. 2109-2118.

    Article  CAS  Google Scholar 

  3. 3. Magnus Neikter, Fredrik Forsberg, Robert Pederson, Marta-Lena Antti, Pia Åkerfeldt, Simon Larsson, Pär Jonsén and Geraldine Puyoo, Aeronautics And Aerospace Open Access Journal 2018, vol. 2, pp. 139-145.

    Article  Google Scholar 

  4. 4. S. Al-Bermani, M. Blackmore, W. Zhang and I. Todd, Metallurgical and Materials Transactions A 2010, vol. 41, pp. 3422-3434.

    Article  Google Scholar 

  5. P. K. Gokuldoss, S. Kolla and J. Eckert, Materials 2017, vol. 10, pp. 672–84.

    Article  Google Scholar 

  6. 6. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang, Prog. Mater. Sci. 2018, vol. 92, pp. 112-224.

    Article  CAS  Google Scholar 

  7. 7. Nikolas Hrabe, Thomas Gnäupel-Herold and Timothy Quinn, International Journal of Fatigue 2017, vol. 94, pp. 202-210.

    Article  CAS  Google Scholar 

  8. M.R. Kabir and H. Richter, Materials (Basel Switzerland) 2017, vol. 10, pp. 145–60.

    Article  Google Scholar 

  9. P. Promoppatum and S.-C. Yao, International Journal of Advanced Manufacturing Technology 2019, 103, pp. 1185–1198

    Article  Google Scholar 

  10. 10. Nikolay K. Tolochko, Sergei E. Mozzharov, Igor A. Yadroitsev, Tahar Laoui, Ludo Froyen, Victor I. Titov and Michail B. Ignatiev, Rapid Prototyping Journal 2004, vol. 10, pp. 78-87.

    Article  Google Scholar 

  11. 11. T. Ahmed and H. J. Rack, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 1998, vol. 243, pp. 206-211.

    Article  Google Scholar 

  12. 12. Yang Jingjing, Yu Hanchen, Yin Jie, Gao Ming, Wang Zemin and Zeng Xiaoyan, Materials & Design 2016, vol. 108, pp. 308-318.

    Article  Google Scholar 

  13. 13. J. W. Pegues, S. Shao, N. Shamsaei, N. Sanaei, A. Fatemi, D. H. Warner, P. Li and N. Phan, International Journal of Fatigue 2020, vol. 132, pp. 105358–76.

    Article  CAS  Google Scholar 

  14. 14. Donghua Dai and Dongdong Gu, International Journal of Machine Tools and Manufacture 2016, vol. 100, pp. 14-24.

    Article  Google Scholar 

  15. Meurig Thomas, Gavin J. Baxter and Iain Todd, Acta Materialia 2016, 40, 26-35.

    Article  Google Scholar 

  16. 16. J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Biermann and T. Niendorf, International Journal of Fatigue 2017, vol. 94, pp. 236-245.

    Article  Google Scholar 

  17. U. Ackelid and M. Svensson: Materials Science & Technology 2009 Conference and Exhibition, Pittsburgh, PA, 2009, pp. 2711–19.

  18. 18. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell and D. Trimble, Int. J. Mach. Tools Manuf. 2018, vol. 128, pp. 1-20.

    Article  Google Scholar 

  19. 19. G. Kasperovich and J. Hausmann, J. Mater. Process. Technol. 2015, vol. 220, pp. 202-214.

    Article  CAS  Google Scholar 

  20. 20. Shubin Ren, Yuhong Chen, Tingting Liu and Xuanhui Qu, Metallurgical and Materials Transactions A 2019, vol. 50, pp. 4388-4409.

    Article  CAS  Google Scholar 

  21. 21. G. Nicoletto, R. Konečná, M. Frkáň and E. Riva, International Journal of Fatigue 2018, vol. 116, pp. 140-148.

    Article  CAS  Google Scholar 

  22. 22. J. Stef, A. Poulon-Quintin, A. Redjaimia, J. Ghanbaja, O. Ferry, M. De Sousa and M. Goune, Materials & Design 2018, vol. 156, pp. 480-493.

    Article  CAS  Google Scholar 

  23. 23. M. Kahlin, H. Ansell and J.J. Moverare, International Journal of Fatigue 2017, vol. 101, pp. 51-60.

    Article  CAS  Google Scholar 

  24. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. (Elsevier, New York, 2002).

    Google Scholar 

  25. S. Leuders, M. Vollmer, F. Brenne, T. Troster and T. Niendorf, Metall. Mater. Trans. A 2015, vol. 46A, pp. 3816-3823

    Article  Google Scholar 

  26. G. Kasperovich, J. Haubrich, J. Gussone and G. Requena, Mater. Des. 2016, 105, 160–170.

    Article  CAS  Google Scholar 

  27. 27. T. Zhai, Y. G. Xu, J. W. Martin, A. J. Wilkinson and G. A. D. Briggs, International Journal of Fatigue 1999, vol. 21, pp. 889-894.

    Article  Google Scholar 

  28. 28. A. H. Chern, P. Nandwana, R. McDaniels, R. R. Dehoff, P. K. Liaw, R. Tryon and C. E. Duty, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, vol. 772, p. 13.

    Article  Google Scholar 

  29. S. Leuders, T. Lieneke, S. Lammers, T. Troster and T. Niendorf, J. Mater. Res. 2014, vol. 29, pp. 1911–19.

    Article  CAS  Google Scholar 

  30. P. Li, D.H. Warner, A. Fatemi and N. Phan, In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (San Deigo, 2016).

  31. 31. Mohsen Seifi, Ayman Salem, Daniel Satko, Joshua Shaffer and John J. Lewandowski, International Journal of Fatigue 2017, vol. 94, pp. 263-287.

    Article  CAS  Google Scholar 

  32. 32. Kwai Chan, Marie Koike, Robert Mason and Toru Okabe, Metallurgical and Materials Transactions A 2013, vol. 44, pp. 1010-1022.

    Article  CAS  Google Scholar 

  33. 33. Mujian Xia, Dongdong Gu, Guanqun Yu, Donghua Dai, Hongyu Chen and Qimin Shi, International Journal of Machine Tools and Manufacture 2016, vol. 109, pp. 147-157.

    Article  Google Scholar 

  34. 34. H. E. Sabzi, Mater. Sci. Technol. 2019, vol. 35, pp. 875-890.

    Article  Google Scholar 

  35. 35. A. A. Antonysamy, J. Meyer and P. B. Prangnell, Materials Characterization 2013, vol. 84, pp. 153-168.

    Article  CAS  Google Scholar 

  36. 36. Charlotte De Formanoir, Alice Brulard, Solange Vivès, Guilhem Martin, Frédéric Prima, Sébastien Michotte, Edouard Rivière, Adrien Dolimont and Stéphane Godet, Materials Research Letters 2017, vol. 5, pp. 201-208.

    Article  Google Scholar 

  37. 37. A. K. Syed, M. Awd, F. Walther and X. Zhang, Mater. Sci. Technol. 2019, vol. 35, pp. 653-660.

    Article  CAS  Google Scholar 

  38. S. Tammas-Williams, H. Zhao, F. Leonard, F. Derguti, I. Todd and P.B. Prangnell, Materials Characterization 2015, vol. 102, pp. 47-61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the manufacturing and machining assistance provided by GE Additive along with their helpful guidance and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Rottmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 21, 2020; accepted February 8, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varney, T.C., Quammen, R.N., Telesz, N. et al. Effects of Pore Geometry on the Fatigue Properties of Electron Beam Melted Titanium-6Al-4V. Metall Mater Trans A 52, 1836–1849 (2021). https://doi.org/10.1007/s11661-021-06194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06194-9

Navigation