Skip to main content
Log in

Weibull Modulus of Cleavage Fracture Toughness of Ferritic Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ordinary Weibull distribution function has been commonly accepted for empirical characterization of cleavage fracture toughness of nuclear reactor and containment pressure vessel steels. However, this method lacks a fundamental basis. This work adopts the standardized Weibull distribution function to analyze cleavage fracture toughness of ferritic steels measured from different sized fracture mechanics specimens at different temperatures to estimate the Weibull modulus. The toughness data of five different nuclear reactor and containment vessel steels are analyzed. The estimations obtained the Weibull modulus (m) in the range of 1.83 to 2.55 and strong temperature dependence of the threshold cleavage fracture toughness Kmin, as opposed to the constant values of mK = 4 and Kmin = 20 MPam1/2 given in ASTM E1921-19. The goodness of fit test by the one-sample Kolmogorov–Smirnov (K–S) test validated Weibull distribution function for describing the toughness distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. ASTM E 1921-19: Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range, ASTM International, 2019.

  2. W.-S. Lei: Mech. Mater. 2016, vol. 101, pp. 81-92.

    Article  Google Scholar 

  3. G. Qian W.-S. Lei, Z. Tong, and Z. Yu: Materials, 2019, vol. 12, paper # 982. https://doi.org/10.3390/ma12060982

  4. J.D. Landes and D.H. Shaffer: Statistical characterization of fracture in the transition region. In: fracture mechanics: twelfth conference. ASTM STP 700, Philadephia: American Society for Testing and Materials, 1980, pp. 368–82.

  5. J.D. Landes and D.E. McCabe: Effect of section size on trnsition temperature behavior of structural steels, In: R.J. Sanford (Ed.), Fracture Mechanics: 15th Symposium, ASTM STP 833, Philadephia: American Society for Testing and Materials,1984, pp.378-392.

    Google Scholar 

  6. D.E. McCabe: A Comparison of Weibull and βIc analyses of transition range data. Presented at the 23rd National Symposium on Fracture Mechanics, College Station, TX, 18-20, June, 1991. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/23/021/23021397.pdf

  7. B. Margolin, A. Gulenko and V. Shvetsova: Fracture toughness prediction for RPV steels with various degree of embrittlement. Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17) Prague, Czech Republic, August 17 –22, 2003, Paper # G03-4. 7 pages.

  8. F.M. Beremin: Metall. Trans. A, 1983, vol. 14, pp. 2277-2287.

    Article  CAS  Google Scholar 

  9. K. Wallin: Eng. Fract. Mech. 1984, vol. 19, pp. 1085-1093.

    Article  Google Scholar 

  10. W.-S. Lei: Mech. Mater. 2016, vol. 93, pp. 184-198.

    Article  Google Scholar 

  11. W.-S. Lei: Philos. Mag. 2016, vol. 96, pp. 3586-3631.

  12. D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, 3rd edition. Wiley, Hoboken; 2003.

    Google Scholar 

  13. Y.L. Zhang, H. Hui, J.B. Zhang, Z.Q. Zhou, X. Hu, and X. Cong: Int. J. Pres. Ves. Pip. 2020, 182, pp. 1040331–10403310.

    Article  Google Scholar 

  14. P.T. Williams, T.L. Dickson, and S. Yin: Fracture Analysis of Vessels — Oak Ridge FAVOR v04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations (NUREG/CR-6854, ORNL/TM-2004/244). https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6854/

  15. K. Onizawa, T. Tobita, and M. Suzuki: Investigation on the evaluation of cleavage fracture toughness using PCCv specimens in the ductile-brittle transition range of reactor pressure vessel steels (Contract Research), Report of Japan Atomic Energy Research Institute #JAERI-Research-97-081, 1997. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/29/019/29019931.pdf

  16. J. Heerens and D. Hellmann: Eng. Fract. Mech., 2002, vol. 69, pp. 421-449.

    Article  Google Scholar 

  17. H.C. Kaner, S.G. Mohanty, and J.C. Lyons: Psychological Bulletin, 88(2), 498–501 (1980)

    Article  Google Scholar 

  18. E. Lucon and M. Scibetta: Application of Advanced Master Curve Approaches to the EURO Fracture Toughness Data Set. In: S. Kalluri, M. McGaw, and A. Neimitz (Eds.), STP1526-EB Fatigue and Fracture Mechanics: 37th Volume, Philadephia: ASTM International, 2011, pp. 116-129. doi: https://doi.org/10.1520/STP49283S.

  19. T. Meshii: Theor. Appl. Fract. Mech., 2019, vol. 100, pp. 354-361.

    Article  CAS  Google Scholar 

  20. M.T. Kirk, The technical basis for application of the Master Curve to the assessment of nuclear reactor pressure vessel integrity, United States Nuclear Regulatory Commission, The Agencywide Documents Access and Management System (ADAMS), ML093540004, 2002. https://www.nrc.gov/docs/ML0935/ML093540004.pdf

Download references

Acknowledgments

GQ is grateful to the funding of National Natural Science Foundation of China (Grant Nos. 11872364, 11932020) and Chinese Academy of Science (CAS) Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W.-S. Lei, G. Qian, Z. Yu or P. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 4, 2020, accepted January 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, WS., Qian, G., Yu, Z. et al. Weibull Modulus of Cleavage Fracture Toughness of Ferritic Steels. Metall Mater Trans A 52, 1503–1515 (2021). https://doi.org/10.1007/s11661-021-06169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06169-w

Navigation