Skip to main content
Log in

Experimental Investigation of Allotropic Transformation of Cobalt: Influence of Temperature Cycle, Mechanical Loading and Starting Microstructure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The allotropic phase transformation in polycrystalline high-purity cobalt is incompletely reversible and exhibits a temperature hysteresis. This leads to the presence of a FCC metastable phase at room temperature, which alters the mechanical properties. Moreover, this phase transformation seems to be induced by the plastic deformation. The influence of thermal cycling and initial microstructure on the phase transformation has been analyzed with different experimental approaches, namely in situ x-ray diffraction, differential scanning calorimetry and high-temperature digital image correlation analysis. A multiscale analysis, under an in situ tensile test, has been adopted to follow the phase transformation induced by the plastic deformation. The main result shows that the transformation is initiated by basal slip mechanisms, in competition with twinning mechanisms during the second work-hardening stage.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] G. Bouquet, B. Dubois: Scr. Metall., 1978, vol. 12, pp. 1079–1081.

    Article  CAS  Google Scholar 

  2. [2] A.E. Ray, S.R. Smith, J.D. Scofielf: J. Phase Equilibria, 1991, vol. 12, pp. 644–648.

    Article  CAS  Google Scholar 

  3. [3] G. Fleurier, E. Hug, M. Martinez, P.-A. Dubos, C. Keller: Philos. Mag. Lett., 2015, vol. 95, pp. 122–130.

    Article  CAS  Google Scholar 

  4. [4] H. Matsumoto: J. Alloys Compd., 1995, vol. 223, pp. L1–L3.

    Article  CAS  Google Scholar 

  5. [5] H. Matsumoto: Phys. B Condens. Matter., 2003, vol. 334, pp. 112–117.

    Article  CAS  Google Scholar 

  6. [6] C.R. Houska, B.L. Averbach, M. Cohen: Acta Metall., 1960, vol. 8, pp. 81–87.

    Article  Google Scholar 

  7. C.C. Sanderson: PhD Thesis, University of British Columbia, 1972.

  8. [8] V.M. Marx, C. Kirchlechner, B. Breitbach, M.J. Cordill, D.M. Többens, T. Waitz, G. Dehm: Acta Mater., 2016, vol. 121, pp. 227–233.

    Article  CAS  Google Scholar 

  9. [9] M. Martinez, G. Fleurier, F. Chmelík, M. Knapek, B. Viguier, E. Hug: Mater. Charact., 2017, vol. 134, pp. 76–83.

    Article  CAS  Google Scholar 

  10. [10] A. Seeger, H. Kronmüller, S. Mader, H. Träuble: Philos. Mag., 1960, vol. 6, pp. 639–655.

    Article  Google Scholar 

  11. [11] G. Fleurier, M. Martinez, P.A. Dubos, E. Hug: Mater. Sci. Forum., 2017, vol. 879, pp. 560–565.

    Article  Google Scholar 

  12. [12] J.W. Christian, W. Hume-Rothery: Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1951, vol. 206, pp. 51–64.

    CAS  Google Scholar 

  13. [13] H.T. Hesemann, P. Müllner, E. Arzt: Scr. Mater., 2001, vol. 44, pp. 25–30.

    Article  CAS  Google Scholar 

  14. [14] H.T. Hesemann, P. Müllner, O. Kraft, D. Nowak, S.P. Baker, K. Finkelstein, E. Arzt: Scr. Mater., 2003, vol. 48, pp. 1129–1133.

    Article  CAS  Google Scholar 

  15. [15] H.-R. Wenk, S. Matthies, J. Donovan, D. Chateigner: J. Appl. Crystallogr., 1998, vol. 31, pp. 262–269.

    Article  CAS  Google Scholar 

  16. N. Bruzy: PhD Thesis, Ecole Centrale de Nantes, 2018.

  17. [17] N. Bruzy, M. Coret, B. Huneau, G. Kermouche, M. Mondon, E. Bertrand, L. Stainier: Exp. Mech., 2019, vol. 59, pp. 1145–1157.

    Article  CAS  Google Scholar 

  18. [18] W.A. Rachinger: J. Sci. Instrum., 1948, vol. 25, pp. 254–255.

    Article  Google Scholar 

  19. [19] M.J. Buerger: Proc. Natl. Acad. Sci., 1940, vol. 26, pp. 637–642.

    Article  CAS  Google Scholar 

  20. [20] J.T. Bonarski, M. Wróbel, K. Pawlik: Mater. Sci. Technol., 2000, vol. 16, pp. 657–662.

    Article  CAS  Google Scholar 

  21. [21] W. Betteridge: Prog. Mater. Sci., 1980, vol. 24, pp. 51–142.

    Article  Google Scholar 

  22. K. Lonsdale, C.H. MacGillavry, and G.D. Rieck: International Tables for X-Ray Crystallography, Kynoch Press, 1962, vol 3.

  23. [23] R. Bauer, E.A. Jaegle, W. Baumann, E.J. Mittemeijer: Philos. Mag., 2010, vol. 91, pp. 437–457.

    Article  Google Scholar 

  24. D. Gloaguen, B. Girault, B. Courant, P.-A. Dubos, M.-J. Moya, F. Edy, J. Rebelo Kornmeier: Metall. Mater. Trans. A., 2020, vol. 51, pp. 951–61.

  25. [25] H. Bibring, F. Sebilleau: Rev. Métallurgie., 1955, vol. 52, pp. 569–578.

    Article  CAS  Google Scholar 

  26. [26] G.W. Greenwood, R.H. Johnson: Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1965, vol. 283, pp. 403–422.

    Google Scholar 

  27. G. Fleurier: PhD Thesis, Université de Caen, 2016.

  28. A. Zhou: PhD Thesis, Drexel University, 2008.

  29. [29] A.G. Zhou, D. Brown, S. Vogel, O. Yeheskel, M.W. Barsoum: Mater. Sci. Eng. A., 2010, vol. 527, pp. 4664–4673.

    Article  Google Scholar 

  30. [30] Y.N. Wang, J.C. Huang: Mater. Chem. Phys., 2003, vol. 81, pp. 11–26.

    Article  CAS  Google Scholar 

  31. [31] J.W. Christian, S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  32. [32] M.H. Yoo: Metall. Trans. A., 1981, vol. 12, pp. 409–418.

    Article  CAS  Google Scholar 

  33. [33] M. Martinez, E. Hug: Materialia, 2019, vol. 7, pp. 100420.

    Article  Google Scholar 

  34. [34] S. Vaidya, S. Mahajan, C.M. Preece: Metall. Trans. A., 1980, vol. 11, pp. 1139–1150.

    Article  Google Scholar 

  35. Z. Nishiyama: Martensitic Transformation, 1st ed., Academic Press, 1978.

  36. [36] F. Sebilleau, H.Bibring: Inst. Met. Monogr., 1956, vol. 18, pp. 209–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Antoine Dubos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 20, 2020; accepted December 21, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskounen, N., Dubos, PA., Fajoui, J. et al. Experimental Investigation of Allotropic Transformation of Cobalt: Influence of Temperature Cycle, Mechanical Loading and Starting Microstructure. Metall Mater Trans A 52, 1477–1491 (2021). https://doi.org/10.1007/s11661-021-06142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06142-7

Navigation