Skip to main content
Log in

The Growth Pattern of Co3Sn2 in Directional Solidification of Co-Sn Hypereutectic Alloy Melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co70Sn30 hypereutectic alloy was directionally solidified at various velocities at temperature gradients of 200 and 300 K/cm. At a given temperature gradient, α-Co/β-Co3Sn2 lamellar eutectic grows with a planar interface when the withdrawal velocity is small. The increases of withdrawal velocity result in primary β-Co3Sn2 phase growing ahead of the eutectic, and its morphology changes from dendritic pattern to fractal seaweed pattern above a critical withdrawal velocity. The rise of the temperature gradient narrows the withdrawal velocity range within which primary β-Co3Sn2 phase can grow in the dendritic pattern. The tip-splitting frequency of the β-Co3Sn2 seaweed vs growth velocity shows a power law \( f \propto V^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}}} \) The change of the primary arm spacing of β-Co3Sn2 with the growth velocity follows \( d_{1} = k_{1} V^{{ - e_{1} }} , \) where the exponent e1 is larger for seaweed growth than for dendritic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The products are provided by Beijing Jiaming platinum nonferrous metals Pioneer Metals Corporation, Beijing, People’s Republic of China.

References

  1. B. Nenchev, J. Strickland, K. Tassenberg, S. Perry, S. Gill, and H.B. Dong: J. Imaging, 2020, vol. 6, p. 19.

    Google Scholar 

  2. J.F. Li, W.Q. Jie, S. Zhao, and Y.H. Zhou: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1806–16.

    CAS  Google Scholar 

  3. L.J. Liu, X.X. Wei, M. Ferry, and J.F. Li: Scripta Mater., 2020, vol. 174, pp. 72–76.

    CAS  Google Scholar 

  4. S. Zhao, J. Li, L. Liu, and Y. Zhou: J. Alloys Compd., 2009, vol. 478, pp. 252–56.

    CAS  Google Scholar 

  5. J.H. Li, J. Li, O. Renk, R. Pippan, and P. Ghosh: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 368–79.

    Google Scholar 

  6. L. Yang, Z. Zhou, J. Qian, X. Ge, J. Li, Q. Hu, and J. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4229–36.

    Google Scholar 

  7. J. Strickland, B. Nenchev, and H.B. Dong: Cryst., 2020, vol. 10, p. 627.

    CAS  Google Scholar 

  8. Kurz W, Rappaz M, Trivedi R (2020) Int Mater Rev. https://doi.org/10.1080/09506608.2020.1757894

    Article  Google Scholar 

  9. A. Pocheau, J. Deschamps, and M. Georgelin: JOM, 2007, vol. 59, pp. 71–76.

    CAS  Google Scholar 

  10. S. Akamatsu and G. Faivre: Phys. Rev. E, 1998, vol. 58, pp. 3302–15.

    CAS  Google Scholar 

  11. S. Akamatsu, G. Faivre, and T. Ihle: Phys. Rev. E, 1995, vol. 51, pp. 4751–73.

    CAS  Google Scholar 

  12. B. Utter and E. Bodenschatz: Phys. Rev. E, 2002, vol. 66, p. 051604.

    CAS  Google Scholar 

  13. Y.M. Wang, S.M. Li, Z.P. Liu, H. Zhong, L. Xu, and H. Xing: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1309–14.

    Google Scholar 

  14. Y.M. Wang, S.M. Li, B. Yang, Z.P. Liu, H. Zhong, H. Xing, and H.M. Wang: Mater. Sci. Eng. A, 2020, vol. 771, p. 138665.

    CAS  Google Scholar 

  15. M. Amoorezaei, S. Gurevich, and N. Provatas: Acta Mater., 2012, vol. 60, pp. 657–63.

    CAS  Google Scholar 

  16. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, and K. Jin: Sci. Rep., 2016, vol. 6, p. 26625.

    CAS  Google Scholar 

  17. H. Xing, M.Y. Ji, X.L. Dong, Y.M. Wang, L.M. Zhang, and S.M. Li: Mater. Des., 2020, vol. 185, p. 108250.

    CAS  Google Scholar 

  18. Y.B. Wang, S.S. Jia, M.G. Wei, L.M. Peng, Y.J. Wu, Y.Z. Ji, L.Q. Chen, and X.T. Liu: J. Alloys Compd., 2020, vol. 815, p. 152385.

    CAS  Google Scholar 

  19. A.M. Mullis, K.I. Dragnevski, and R.F. Cochrane: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 157–62.

    Google Scholar 

  20. E.G. Castle, A.M. Mullis, and R.F. Cochrane: Acta Mater., 2014, vol. 66, pp. 378–87.

    CAS  Google Scholar 

  21. E.G. Castle, A.M. Mullis, and R.F. Cochrane: Acta Mater., 2014, vol. 77, pp. 76–84.

    CAS  Google Scholar 

  22. N. Haque, R.F. Cochrane, and A.M. Mullis: J. Alloys Compd., 2017, vol. 707, pp. 327–31.

    CAS  Google Scholar 

  23. N. Haque and A.M. Mullis: J. Alloys Compd., 2019, vol. 801, pp. 640–44.

    CAS  Google Scholar 

  24. J.B. Zhang, H.F. Wang, F. Zhang, X.L. Lü, Y.C. Zhang, and Q. Zhou: J. Alloys Compd., 2019, vol. 781, pp. 13–25.

    CAS  Google Scholar 

  25. L. Liu, J.F. Li, and Y.H. Zhou: Acta Mater., 2011, vol. 59, pp. 5558–67.

    CAS  Google Scholar 

  26. X. Ma and L. Liu: Mater. Des., 2015, vol. 83, pp. 138–43.

    CAS  Google Scholar 

  27. J.L. Kang, W.Q. Xu, X.X. Wei, M. Ferry, and J.F. Li: J. Alloys Compd., 2017, vol. 695, pp. 1498–1504.

    CAS  Google Scholar 

  28. J.L. Kang, W.Q. Xu, X.X. Wei, M. Ferry, and J.F. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6187–96.

    Google Scholar 

  29. M. Gündüz and E. Çadırlı: Mater. Sci. Eng. A, 2002, vol. 327, pp. 167–85.

    Google Scholar 

  30. T. Ihle and H. Müller-Krumbhaar: Phys. Rev. E, 1994, vol. 49, pp. 2972–91.

    CAS  Google Scholar 

  31. D.M. Stefanescu: Science and Engineering of Casting Solidification, 2nd ed., Springer, New York, NY, 2009.

    Google Scholar 

  32. L. Pauling: The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1960, pp. 221–57.

    Google Scholar 

  33. Y. Guo, R. Yu, R. Zhang, X. Zhang, and K. Tao: J. Phys. Chem. B, 1998, vol. 102, pp. 9–16.

    CAS  Google Scholar 

  34. H. Assadi, M. Oghabi, and D.M. Herlach: Acta Mater., 2009, vol. 57, pp. 1639–47.

    CAS  Google Scholar 

  35. M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109–16.

    CAS  Google Scholar 

  36. E. Brener, H. Muller-Krumbhaar, and D. Temkin: Phys. Rev. E, 1996, vol. 52, pp. 2714–22.

    Google Scholar 

  37. B. Wei and D.H. Herlach: Mater. Sci. Eng. A, 1993, vol. 173, pp. 357–61.

    Google Scholar 

  38. B. Utter, R. Ragnarsson, and E. Bodenschatz: Phys. Rev. Lett., 2001, vol. 86, pp. 4604–07.

    CAS  Google Scholar 

  39. N. Provatas, Q. Wang, M. Haataja, and M. Grant: Phys. Rev. Lett., 2003, vol. 91, p. 155502.

    Google Scholar 

  40. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    CAS  Google Scholar 

  41. J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li, and Y.H. Zhou: J. Mater. Sci. Lett., 1999, vol. 18, pp. 29–31.

    CAS  Google Scholar 

  42. D. Ma, Y. Li, S.C. Ng, and H. Jones: Adv. Mater., 2001, vol. 2, pp. 127–30.

    CAS  Google Scholar 

  43. Y. Miyata, T. Suzuki, and J.I. Uno: Metall. Trans. A, 1985, vol. 16A, pp. 1799–1805.

    CAS  Google Scholar 

  44. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 51620105012, 51771116, and 51821001), Research Fund of Gansu Education Department (Grant No. 2019A-034), and TJU-LZJTU Cooperative Research Fund (Grant No. 2020051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript Submitted May 11, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.L., Li, J.F. The Growth Pattern of Co3Sn2 in Directional Solidification of Co-Sn Hypereutectic Alloy Melts. Metall Mater Trans A 51, 6346–6354 (2020). https://doi.org/10.1007/s11661-020-05997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05997-6

Navigation