Skip to main content
Log in

Characterization of Microstructure and Stress Corrosion Cracking Susceptibility in a Multi-pass Austenitic Stainless Steel Weld Joint by Narrow-Gap TIG

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, correlation of the microstructure and stress corrosion cracking (SCC) susceptibility in the top, middle and root regions of a multi-pass austenitic stainless steel weld joint fabricated by narrow-gap tungsten inert gas welding (NG-TIG) was investigated by slow strain rate tests (SSRT) following a microstructure characterization. The results show that from the top to root regions in both the heat-affected zone (HAZ) and weld metal (WM), the dislocation density and length fraction of the Σ3 boundaries present a decreased trend, while the grain size, length fraction of LAB and residual strain all increase. By comparing the microstructure of WM with HAZ, δ-ferrite in WM is excessive and continuous while that in HAZ is island-shaped and discontinuous. In addition, larger grain size, lower dislocation density, higher residual strain, lower length fraction of Σ3 boundaries and higher length fraction of RGB are observed in WM. As a result, the SCC susceptibility in various regions of the weld joint follows the order of root regions > middle regions > top regions and WM > HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jingwen Zhang, Liming Yu, Yongchang Liu, Huijun Li, Chenxi Liu, Jiefeng Wu, Jianguo Ma and Zhanlun Li, International Journal of Pressure Vessels and Piping 2019, vol. 175, pp. 103930.

    Google Scholar 

  2. R. Chhibber, N. Arora, S. R. Gupta and B. K. Dutta, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2016, vol. 220, pp. 1121-1133.

    Google Scholar 

  3. Roland Tolulope Loto and Cleophas Akintoye Loto, Materials Research Express 2019, vol. 6, pp. 086516.

    CAS  Google Scholar 

  4. A. P. García-Mendoza, G. Vargas-Gutiérrez and J. López-Cuevas, Surface and Coatings Technology 2018, vol. 353, pp. 190-198.

    Google Scholar 

  5. Manikandan M, Gunachandran R, Vigneshwaran M, Sudhakar S, Srikanth A, Venkateshkannan M, Arivarasu M, Arivazhagan N, Rajan DN (2017) Trans Indian Inst Met 70:749-757

    CAS  Google Scholar 

  6. Youmin Rong, Yu Huang, Guojun Zhang, Gaoyang Mi and Wenjun Shao, The International Journal of Advanced Manufacturing Technology 2016, vol. 90, pp. 2263-2270.

    Google Scholar 

  7. M. Vasudevan, Journal of Materials Engineering and Performance 2017, vol. 26, pp. 1325-1336.

    CAS  Google Scholar 

  8. Hongliang Ming, Zhiming Zhang, Jianqiu Wang, En-Hou Han, Peipei Wang and Zhiyuan Sun, Materials Characterization 2017, vol. 123, pp. 233-243.

    CAS  Google Scholar 

  9. Hongliang Ming, Zhiming Zhang, Jianqiu Wang, En-Hou Han and Wei Ke, Materials Characterization 2014, vol. 97, pp. 101-115.

    CAS  Google Scholar 

  10. Bala Srinivasan P, Satish Kumar MP (2009) Mater Chem Phys 115:179-184

    Google Scholar 

  11. Zhihui Zhang, Shiyun Dong, Yujiang Wang, Binshi Xu, Jinxiang Fang and Peng He, Materials & Design 2015, vol. 84, pp. 173-177.

    CAS  Google Scholar 

  12. Akbar Heidarzadeh, Archives of Civil and Mechanical Engineering 2019, vol. 19, pp. 137-146.

    Google Scholar 

  13. Qiang Zhang, Jianmin Han, Caiwang Tan, Zhiyong Yang and Junqiang Wang, Journal of Materials Engineering and Performance 2016, vol. 25, pp. 5522-5529.

    CAS  Google Scholar 

  14. Hongliang Ming, Ruolin Zhu, Zhiming Zhang, Jianqiu Wang, En Hou Han, Wei Ke and Mingxing Su, Materials Science and Engineering: A 2016, vol. 669, pp. 279-290.

    CAS  Google Scholar 

  15. Mônica Maria de Abreu Mendonça Schvartzman, Marco Antônio Dutra Quinan, Wagner Reis da Costa Campos and Luciana Iglésias Lourenço Lima, Welding International 2011, vol. 25, pp. 15-23.

    Google Scholar 

  16. C.H. Hsu, T.C. Chen, R.T. Huang, and L.W. Tsay: Materials, 2017, vol. 10, pp. 187–200.

    Google Scholar 

  17. Hong-Liang Ming, Zhi-Ming Zhang, Peng-Yuan Xiu, Jian-Qiu Wang, En-Hou Han, Wei Ke and Ming-Xing Su, Acta Metallurgica Sinica (English Letters) 2016, vol. 29, pp. 848-858.

    Google Scholar 

  18. Zhanpeng Lu, Tetsuo Shoji, Yoichi Takeda, Yuzuru Ito, Akira Kai and Nobuhisa Tsuchiya, Corrosion Science 2008, vol. 50, pp. 625-638.

    CAS  Google Scholar 

  19. Tomoyuki Fujii, Ryohei Yamakawa, Keiichiro Tohgo and Yoshinobu Shimamura, Materials Science and Engineering: A 2019, vol. 756, pp. 518-527.

    CAS  Google Scholar 

  20. Ruolin Zhu, Jianqiu Wang, Litao Zhang, Zhiming Zhang and En-hou Han, Corrosion Science 2016, vol. 112, pp. 373-384.

    CAS  Google Scholar 

  21. Lijin Dong, Qunjia Peng, En-Hou Han, Wei Ke and Lei Wang, Journal of Materials Science & Technology 2018, vol. 34, pp. 1281-1292.

    Google Scholar 

  22. Jingwen Zhang, Liming Yu, Yongchang Liu, Zongqing Ma, Huijun Li, Chenxi Liu, Jiefeng Wu, Jianguo Ma and Zhanlun Li, Metals 2018, vol. 8, p. 912.

    CAS  Google Scholar 

  23. Abburi Venkata K, Truman CE, Coules HE, Warren AD (2017) J Mater Process Technol 241:54-63

    CAS  Google Scholar 

  24. Githinji DN, Northover SM, John Bouchard P, Rist MA (2013) Metall Mater Trans A 44A:4150-4167

    Google Scholar 

  25. Morteza Shamanian, Mahyar Mohammadnezhad, Mahdi Amini, Azam Zabolian and Jerzy A. Szpunar, Journal of Materials Engineering and Performance 2015, vol. 24, pp. 3118-3128.

    CAS  Google Scholar 

  26. Wenqian Zhang, Xuelin Wang, Yujin Hu and Siyang Wang, Journal of Materials Engineering and Performance 2018, vol. 27, pp. 434-446.

    CAS  Google Scholar 

  27. Yanpeng Qu, Runkun Wang, Chao Wang and Songying Chen, Results in Physics 2016, vol. 6, pp. 690-697.

    Google Scholar 

  28. Goji M, Kožuh S, Kosec L (2009) Kov Mater Met Mater 47:253-262

    Google Scholar 

  29. H. Abe, Y. Watanabe, Journal of Nuclear Materials 2012, vol. 424, pp. 57-61.

    CAS  Google Scholar 

  30. D. Terentyev, L. Malerba, D. J. Bacon and Yu N. Osetsky, Journal of Physics: Condensed Matter 2007, vol. 19, p. 456211.

    Google Scholar 

  31. S. C. Kennett, G. Krauss and K. O. Findley, Scripta Materialia 2015, vol. 107, pp. 123-126.

    CAS  Google Scholar 

  32. Ari Saastamoinen, Antti Kaijalainen, David Porter, Pasi Suikkanen, Jer-Ren Yang and Yu-Ting Tsai, Materials Characterization 2018, vol. 139, pp. 1-10.

    CAS  Google Scholar 

  33. T. Malis, S.C. Cheng, R.F. Egerton, Journal of Electron Microscopy Technique 1988, vol. 107, pp. 193-200.

    Google Scholar 

  34. Parag M. Ahmedabadia, Vivekanand Kain a, Bhupinder Kumar Dangi b, I. Samajdar c, Corrosion Science 2013, vol. 66, pp. 242-255.

    Google Scholar 

  35. Jinna Mei Cheng Ma, Qunjia Peng, Ping Deng, En-Hou Han, Wei Ke Journal of Materials Science & Technology 2015, vol. 31, pp. 1011-1017.

    CAS  Google Scholar 

  36. J. Hou, T. Shoji, Z. P. Lu, Q. J. Peng, J. Q. Wang, E. H. Han and W. Ke, Journal of Nuclear Materials 2010, vol. 397, pp. 109-115.

    CAS  Google Scholar 

  37. Yun Soo Lim, Hong Pyo Kim, Hai Dong Cho and Han Hee Lee, Materials Characterization 2009, vol. 60, pp. 1496-1506.

    CAS  Google Scholar 

  38. G. Palumbo, K.T. Aust and E.M. Lehockey, Scripta Materialia 1998, vol. 38, pp. 1685-1690.

    CAS  Google Scholar 

  39. Behnam Sadeghi, Hassan Sharifi, Mahdi Rafiei and Morteza Tayebi, Engineering Failure Analysis 2018, vol. 94, pp. 396-406.

    CAS  Google Scholar 

  40. MirKo Gojić Stjepan Kožuh, LADISLAV KOSEC, Materials and Geoenvironment 2007, vol. 54, pp. 331-344.

    Google Scholar 

  41. Jijun Xin, Chao Fang, Yuntao Song, Jing Wei, Shen Xu and Jiefeng Wu, Cryogenics 2017, vol. 83, pp. 1-7.

    CAS  Google Scholar 

  42. Fei Yin, Gary J. Cheng, Rong Xu, Kejie Zhao, Qiang Li, Jie Jian, Shan Hu, Shaoheng Sun, Licong An and Qingyou Han, Scripta Materialia 2018, vol. 155, pp. 26-31.

    CAS  Google Scholar 

  43. M. Sudmanns, P. Gumbsch and K. Schulz, Computational Materials Science 2018, vol. 151, pp. 317-327.

    Google Scholar 

  44. Zhanpeng Lu, Tetsuo Shoji, Fanjiang Meng, He Xue, Yubing Qiu, Yoichi Takeda and Koji Negishi, Corrosion Science 2011, vol. 53, pp. 1916-1932.

    CAS  Google Scholar 

  45. T. Liu, Q. Bai, X. Ru, S. Xia, X. Zhong, Y. Lu, T. Shoji, Materials Science and Technology 2019, vol. 35, pp. 477-487.

    CAS  Google Scholar 

  46. T. Liu, S. Xia, D. Du, Q. Bai, L. Zhang, Y. Lu, Materials Letters 2019, vol. 234, pp. 201-204.

    CAS  Google Scholar 

  47. N. Sakaguchi, Y. Ohguchi, T. Shibayama, S. Watanabe and H. Kinoshita, Journal of Nuclear Materials 2013, vol. 432, pp. 23-27.

    CAS  Google Scholar 

  48. Tingguang Liu, Shuang Xia, Qin Bai, Bangxin Zhou, Lefu Zhang, Yonghao Lu and Tetsuo Shoji, Journal of Nuclear Materials 2018, vol. 498, pp. 290-299.

    CAS  Google Scholar 

  49. D. Du, J. Wang, K. Chen, L. Zhang, P.L. Andresen, Corrosion Science 2019, vol. 147, pp. 69-80.

    CAS  Google Scholar 

  50. Krishnan KN, Prasad Rao K (1991) Mater Sci Eng A 142:79-85

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U1960204, 51974199 and 51971207) and the Science and Technology Program of Tianjin, China (No. 18YFZCGX00070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Yu or Yongchang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yu, L., Ma, Z. et al. Characterization of Microstructure and Stress Corrosion Cracking Susceptibility in a Multi-pass Austenitic Stainless Steel Weld Joint by Narrow-Gap TIG. Metall Mater Trans A 51, 4549–4562 (2020). https://doi.org/10.1007/s11661-020-05871-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05871-5

Navigation