Skip to main content

Advertisement

Log in

Ultrafast Atomic Diffusion Paths in Fine-Grained Nickel Obtained by Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Short-circuit diffusion in fine-grained Ni samples processed by Spark Plasma sintering has been investigated by the radiotracer technique. Ni grain boundary self-diffusion is measured in samples sintered from commercial as-received powder and from a powder processed by mechanical milling (MM). Both samples displayed high penetration of the radiotracer and ultrafast diffusion rates, which exceed the diffusivity along general high-angle grain boundaries as they are present in pure polycrystalline Ni. A distinct profile was observed for each sample, dependent on the precursor powder. A stable penetration profile after pre-annealing at 773 K was observed when using commercial powder whereas a decrease in the grain boundary diffusion coefficient was depicted for the sample prepared from MM powders. The latter observation was interpreted in terms of partial relaxation of non-equilibrium grain boundaries generated by MM. Sample preparation by focused ion beam enabled the observation of interconnected porous paths in the sample prepared from commercial powders, which represent the main ultrafast diffusion path. A measurement of the surface diffusion coefficient through the pores was attempted considering a B–C-type kinetic regime. The isolated pores observed in the sample prepared from MM powder suggest a complex hierarchy of diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Torralba, Improvement of Mechanical and Physical Properties in Powder Metallurgy. in: S. Hashmi (Ed.) Advanced forming technologies. Elsevier, Amsterdam, 2014, pp. 281-93.

    Google Scholar 

  2. W.B. James (2015) Powder Metallurgy Methods and Applications. In: W. Newkirk (Ed.) Powder Metal. ASM International, Cleveland

    Google Scholar 

  3. M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U.J. Hennicke, R. Kirchner, and T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, in: B. Ertug (Ed.) Sintering Applications. IntechOpen, Dundas, 2013.

    Google Scholar 

  4. P. Ramakrishnan: Indian J. Hist. Sci., 1983, vol. 18, pp. 109-14.

    Google Scholar 

  5. D.A. Levina, L.I. Chernyshev, and N.V. Mikhailovskaya: Powder Metall. Met. Ceram., 2007, vol. 46, pp. 202-05.

    Article  CAS  Google Scholar 

  6. L.A. Dobrzanski, Goals and Contemporary Position of Powder Metallurgy, in: L.A. Dobrzanski (Ed.) Powder Metallurgy. Fundamentals and Case Studies, IntechOpen, 2017, pp. 1-17.

    Google Scholar 

  7. T. Sekiguchi, K. Ono, H. Fujiwara, and K. Ameyama: Mater. Trans., 2010, vol. 51, pp. 39-45.

    Article  CAS  Google Scholar 

  8. J. Gubicza, H.-Q. Bui, F. Fellah, and G. Dirras: J. Mater. Research, 2009, vol. 24, pp. 217-26.

    Article  CAS  Google Scholar 

  9. Z. Zhang, D. Orlov, S.K. Vajpai, B. Tong, and K. Ameyama: Advanced Engineering Materials, 2015, vol. 17, pp. 791-95.

    Article  CAS  Google Scholar 

  10. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  CAS  Google Scholar 

  11. B. Flipon, C. Keller, L. Garcia de la Cruz, E. Hug, and F. Barbe: Mater. Sci. Eng. A, 2018, 729, 249-56.

    Article  CAS  Google Scholar 

  12. G.D. Dutel, D. Tingaud, P. Langlois, and G. Dirras: J. Mater. Sci., 2012, vol. 47, pp. 7926-31.

    Article  CAS  Google Scholar 

  13. C. Sawangrat, O. Yamaguchi, S.K. Vajpai, and K. Ameyama: Mater. Trans., 2014, vol. 55, pp. 99-105.

    Article  CAS  Google Scholar 

  14. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, and E.J. Lavernia: Adv. Mater., 2008, vol. 20, pp. 3028-33.

    Article  CAS  Google Scholar 

  15. P. Knorr, J.G. Nam, and J.S. Lee: Metall. Mater. Trans. A, 2000, vol. 31, pp. 503-10.

    Article  CAS  Google Scholar 

  16. S.V. Divinski, J.S. Lee, and C. Herzig: J. Metast. Nano. Mater., 2004, vol. 19, pp. 55-68.

    CAS  Google Scholar 

  17. D.B. Bober, A. Khalajhedayati, M. Kumar, and T.J. Rupert: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1389-403.

    Article  CAS  Google Scholar 

  18. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde: Acta Mater., 2011, vol. 59, pp. 1974-85.

    Article  CAS  Google Scholar 

  19. S.V. Divinski: Diffus. Found., 2015, vol. 5, pp. 57-73.

    Article  CAS  Google Scholar 

  20. G. Wilde, and S.V. Divinski: Mater. Trans., 2019, vol. 60, pp. 1302-15.

    Article  CAS  Google Scholar 

  21. H. Miyamoto: Mater. Trans., 2016, vol. 57, pp. 559-72.

    Article  CAS  Google Scholar 

  22. A. Hasnaoui, H.V. Swygenhoven, and P.M. Derlet: Acta Mater., 2002, vol. 50, pp. 3927-39.

    Article  CAS  Google Scholar 

  23. S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde: Acta Mater., 2015, vol. 82, pp. 11-21.

    Article  CAS  Google Scholar 

  24. D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, and S.V. Divinski: Acta Mater., 2014, vol. 69, pp. 314-25.

    Article  CAS  Google Scholar 

  25. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev: Nanostruct. Mater., 1995, vol. 6, pp. 775-78.

    Article  Google Scholar 

  26. G. Liang, J. Huot, S. Boily, A.V. Neste, and R. Schulz: J. Alloy Compd, 1999, vol. 292, pp. 247-52.

    Article  CAS  Google Scholar 

  27. A. Zaluska, L. Zaluski, and J.O. Ström-Olsen: J. Alloy Compd, 1999, 288, 217-25.

    Article  CAS  Google Scholar 

  28. V.M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok: Acta Mater., 2004, vol. 52, pp. 405-14.

    Article  CAS  Google Scholar 

  29. S. Poulat, B. Décamps, and L. Priester: Phil. Mag. A, 1999, vol. 79, pp. 2655-80.

    Article  CAS  Google Scholar 

  30. A.A. Nazarov: Interface Sci., 2000, vol. 8, pp. 315-22.

    Article  CAS  Google Scholar 

  31. S.V. Divinski, F. Hisker, Y.S. Kang, J.S. Lee, and C. Herzig: Interface Sci., 2003, vol. 11, pp. 67-80.

    Article  CAS  Google Scholar 

  32. Y. Amouyal, S.V. Divinski, Y. Estrin, and E. Rabkin: Acta Mater., 2007, vol. 55, pp. 5968-79.

    Article  CAS  Google Scholar 

  33. G. Cipolloni, M. Pellizzari, A. Molinari, M. Hebda, and M. Zadra: Powder Techn., 2015, vol. 275, pp. 51-59.

    Article  CAS  Google Scholar 

  34. V. Randle: Mater. Charact., 2001, vol. 47, pp. 411-16.

    Article  CAS  Google Scholar 

  35. A.H. King, and S. Shekhar: J. Mater. Sci., 2006, vol. 41, pp. 7675-82.

    Article  CAS  Google Scholar 

  36. T. Borkar, and R. Banerjee: Mater. Sci. Eng. A, 2014, vol. 618, pp. 176-81.

    Article  CAS  Google Scholar 

  37. L.G. Harrison: Trans. Faraday Soc., 1961, vol. 57, pp. 1191-99.

    Article  CAS  Google Scholar 

  38. S.V. Divinski, G. Reglitz, and G. Wilde: Acta Mater., 2010, vol. 58, pp. 386-95.

    Article  CAS  Google Scholar 

  39. A. Paul, T. Laurila, V. Vuorinen, and S.V. Divinski, Thermodynamics, Diffusion and Kirkendall Effect in Solids, Springer International Publishing Switzerland, 2014.

  40. K. Maier, H. Mehrer, E. Lessmann, and W. Schüle: Phys. Stat. Sol. B, 1976, vol. 78, pp. 689-98.

    Article  CAS  Google Scholar 

  41. D.L. Beke, I. Gödény, G. Erdélyi, and F.J. Kedves: Phil. Mag. A, 1987, vol. 56, pp. 659-71.

    Article  CAS  Google Scholar 

  42. S.V. Divinski, F. Hisker, Y.S. Kang, J.S. Lee, and C. Herzig: Zeit. Metall., 2002, vol. 93, pp. 265-72.

    Article  CAS  Google Scholar 

  43. S.V. Divinski, F. Hisker, Y.S. Kang, J.S. Lee, and C. Herzig: Acta Mater., 2004, vol. 52, pp. 631-45.

    Article  CAS  Google Scholar 

  44. D. Prokoshkina, V.A. Esin, G. Wilde, and S.V. Divinski: Acta Mater., 2013, vol. 61, pp. 5188-97.

    Article  CAS  Google Scholar 

  45. S.V. Divinski, M. Lohmann, C. Herzig, B. Straumal, B. Baretzky, and W. Gust: Phys. Rev. B, 2005, vol. 71, pp. 104104.

    Article  CAS  Google Scholar 

  46. J. Ribbe, D. Baither, G. Schmitz, and S.V. Divinski: Scripta Mater., 2009, vol. 61, pp. 129-32.

    Article  CAS  Google Scholar 

  47. R.T. Tung, and W.R. Graham: Surf. Sci., 1980, vol. 97, pp. 73-87.

    Article  CAS  Google Scholar 

  48. L. García de la Cruz, B. Flipon, C. Keller, M. Martinez, and E. Hug: AIP Conf. Proc., 2017, vol. 1896, pp. 200002.

    Article  CAS  Google Scholar 

  49. S.V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, and G. Wilde: Acta Mater., 2009, vol. 57, pp. 5706-17.

    Article  CAS  Google Scholar 

  50. R. Singh, J.H. Schneibel, S. Divinski, and G. Wilde: Acta Mater., 2011, vol. 59, pp. 1346-53.

    Article  CAS  Google Scholar 

  51. S.V. Divinski, J. Ribbe, G. Reglitz, Y. Estrin, and G. Wilde: J. Appl. Phys., 2009, vol. 106, pp. 063502.

    Article  CAS  Google Scholar 

  52. H. Gleiter: Prog. Mater. Sci., 1989, vol. 33, pp. 223-315.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with the financial support of the program EQUIPEX GENESIS, Agence Nationale de la Recherche (Grant No. ANR-11-EQPX-0020) for dual-beam experiments. A partial financial support from the German Science Foundation (DFG) via research project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Hug.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García de la Cruz, L., Domenges, B., Divinski, S.V. et al. Ultrafast Atomic Diffusion Paths in Fine-Grained Nickel Obtained by Spark Plasma Sintering. Metall Mater Trans A 51, 3425–3434 (2020). https://doi.org/10.1007/s11661-020-05791-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05791-4

Navigation