Skip to main content
Log in

Non-stoichiometry Effects and Phase Equilibria in the Uranium-Carbon-Nitrogen Ternary System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uranium carbonitride—a solid solution of stoichiometric UC and UN compounds—is considered as a potential nuclear fuel, and is only one of multiple phases that occur in the ternary U-C-N system. Explanation of available observed data and successful synthesis of the ternary U(C, N) compound requires understanding of complex phase equilibria that take place in the system. A subregular solution model is introduced to account for the non-stoichiometry of two-component solid phases (α-, β-UC2, α-U2N3), and an ideal solution model—for the substitutional nature of C–N interactions in the non-metal sublattice of U(C, N). The model better reproduces the phase fields compared to the previously reported approach, and is in good agreement with the available observed data. The stability diagram of U(C, N) with its composition and temperature (or pressure) as axes is used to compare the model predictions and the observed equilibrium data. While the theory is consistent with the available data, there is a certain disagreement with the observed equilibrium N2 partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Nam, P. Venneri, Y. Kim, S.H. Chang, and Y.H. Jeong: Prog. Nucl. Energy, 2016, vol. 91, pp. 183–207.

    CAS  Google Scholar 

  2. H. Matzke: Science of Advanced LMFBR Fuels : Solid State Physics, Chemistry, and Technology of Carbides, Nitrides, and Carbonitrides of Uranium and Plutonium, North-Holland, Netherlands, 1986.

    Google Scholar 

  3. A.E. Austin and A.F. Gerds: The Uranium-Nitrogen-Carbon System BMI-1272. Battelle Memorial Inst., Columbus (1958)

    Google Scholar 

  4. J. Williams and R.A.J. Sambell: J. less-common Met., 1959, vol. 1, pp. 217–26.

    CAS  Google Scholar 

  5. T.B. Lindemer, S.L. Voit, C.M. Silva, T.M. Besmann, and R.D. Hunt: J. Nucl. Mater., 2014, vol. 448, pp. 404–11.

    CAS  Google Scholar 

  6. T.M. Besmann, D. Shin, and T.B. Lindemer: J. Nucl. Mater., 2012, vol. 427, pp. 162–8.

    CAS  Google Scholar 

  7. C.M. Silva, T.B. Lindemer, S.R. Voit, R.D. Hunt, T.M. Besmann, K.A. Terrani, and L.L. Snead: J. Nucl. Mater., 2014, vol. 454, pp. 405–12.

    CAS  Google Scholar 

  8. T.B. Lindemer, C.M. Silva, J.J. Henry, J.W. McMurray, S.L. Voit, J.L. Collins, and R.D. Hunt: J. Nucl. Mater., 2017, vol. 483, pp. 176–91.

    CAS  Google Scholar 

  9. M. Tamaki, Y. Ikeda, H. Matsui, and T. Kirihara: J. Less-Common Met., 1986, vol. 121, pp. 67–71.

    CAS  Google Scholar 

  10. H. Zhong, Y. Zhang, Y. Hu, Z. Chen, C. Mo, D. Lang, L. Lu, Q. Wang, X. Jiang, Y. Wu, and K. Liu: J. Alloys Compd., 2019, vol. 774, pp. 779–86.

    CAS  Google Scholar 

  11. J.M. Leitnaker: Thermodynamics of nuclear materials, International Atomic Energy Agency, Vienna, 1968, pp. 317–30.

    Google Scholar 

  12. J.L. Henry and R. Blikensderfer: J. Am. Ceram. Soc., 1969, vol. 52, pp. 534–9.

    CAS  Google Scholar 

  13. E.H.P. Cordfunke and W. Ouweltjes: J. Nucl. Mater., 1979, vol. 79, pp. 271–6.

    CAS  Google Scholar 

  14. A. Naoumidis and H.J. Stöcker: in Thermodynamics of nuclear materials, International Atomic Enegry Agency, Vienna, 1968, pp. 287–300.

    Google Scholar 

  15. M. Katsura, S. Imoto, and T. Sano: J. Nucl. Sci. Technol., 1964, vol. 1, pp. 22–6.

    CAS  Google Scholar 

  16. R. Benz and J.D. Farr: J. Nucl. Mater., 1972, vol. 42, pp. 217–22.

    CAS  Google Scholar 

  17. P.E. Potter and K.E. Spear: in Thermodynamics of Nuclear Materials, IAEA, E.A. Beck, ed., vol. 2, Vienna, 1980, pp. 195–226.

  18. P. Perrot: in Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. Refractory metal systems, G. Effenberg and S. Ilyenko, eds., Springer, Berlin, Heidelberg, 2010, pp. 551–9.

  19. H.B. Callen: Thermodynamics and an Introduction to Thermostatistics, 2nd edn., Hoboekn: Wiley, 1985.

    Google Scholar 

  20. E. Fermi: Thermodynamics, 1956.

  21. A.L. Voskov, A. V Dzuban, and A.I. Maksimov: Fluid Phase Equilib., 2015, vol. 388, pp. 50–8.

    CAS  Google Scholar 

  22. D.D. Lee, J.H. Choy, and J.K. Lee: J. Phase Equilibria, 1992, vol. 13, pp. 365–72.

    CAS  Google Scholar 

  23. B. Sundman, X.-G. Lu, and H. Ohtani: Comput. Mater. Sci., 2015, vol. 101, pp. 127–37.

    CAS  Google Scholar 

  24. M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161–76.

    CAS  Google Scholar 

  25. B. Sundman and J. Ågren: J. Phys. Chem. Solids, 1981, vol. 42, pp. 297–301.

    CAS  Google Scholar 

  26. M. Hillert and L.-I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    CAS  Google Scholar 

  27. P.-Y. Chevalier and E. Fischer: J. Nucl. Mater., 2001, vol. 288, pp. 100–29.

    CAS  Google Scholar 

  28. P.-Y. Chevalier, E. Fischer, and B. Cheynet: J. Nucl. Mater., 2000, vol. 280, pp. 136–50.

    CAS  Google Scholar 

  29. C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.-C. Dumas, S. Gossé, S. Chatain, F. De Bruycker, D. Manara, and R.J.M. Konings: J. Nucl. Mater., 2011, vol. 419, pp. 145–67.

    Google Scholar 

  30. R.E. Rundle: Acta Crystallogr., 1948, vol. 1, pp. 180–7.

    CAS  Google Scholar 

  31. M. Katsura, A. Naoumidis, and H. Nickel: J. Nucl. Mater., 1970, vol. 36, pp. 169–79.

    CAS  Google Scholar 

  32. K.E. Gutowski, N.J. Bridges, and R.D. Rogers: in The Chemistry of the Actinide and Transactinide Elements, Springer Netherlands, Dordrecht, 2008, pp. 2380–523.

    Google Scholar 

  33. M. Katsura and T. Nomura: J. Nucl. Mater., 1974, vol. 51, pp. 63–8.

    CAS  Google Scholar 

  34. G. Prins, E.H.P. Cordfunke, and R. Depaus: J. Nucl. Mater., 1980, vol. 89, pp. 221–8.

    CAS  Google Scholar 

  35. H. Okamoto: J. Phase Equilibria, 1997, vol. 18, pp. 107–107.

    CAS  Google Scholar 

  36. H. Serizawa, K. Fukuda, Y. Ishii, Y. Morii, and M. Katsura: J. Nucl. Mater., 1994, vol. 208, pp. 128–34.

    CAS  Google Scholar 

  37. N. Tagawa and N. Masaki: J. Inorg. Nucl. Chem., 36, 1099–103 (1974).

    CAS  Google Scholar 

  38. X. Wang, R.-Z. Qiu, Q. Wang, L.-Z. Luo, Y. Hu, K.-Z. Liu, and P.-C. Zhang: Inorg. Chem., 2017, vol. 56, pp. 3550–5.

    CAS  Google Scholar 

  39. H. Serizawa, K. Fukuda, and M. Katsura: J. Alloys Compd., 1995, vol. 223, pp. 39–44.

    CAS  Google Scholar 

  40. F. Poineau, C.B. Yeamans, G.W.C. Silva, G.S. Cerefice, A.P. Sattelberger, and K.R. Czerwinski: J. Radioanal. Nucl. Chem., 2012, vol. 292, pp. 989–94.

    CAS  Google Scholar 

  41. G.W.C. Silva, C.B. Yeamans, A.P. Sattelberger, T. Hartmann, G.S. Cerefice, and K.R. Czerwinski: Inorg. Chem., 2009, vol. 48, pp. 10635–42.

    CAS  Google Scholar 

  42. D.A. Vaughan: JOM, 1956, vol. 8, pp. 78–9.

    CAS  Google Scholar 

  43. R.E. Rundle, N.C. Baenziger, A.S. Wilson, and R.A. McDonald: J. Am. Chem. Soc., 1948, vol. 70, pp. 99–105.

    CAS  Google Scholar 

  44. U. Nunez, D. Prieur, R. Bohler, and D. Manara: J. Nucl. Mater., 2014, 449, 1–8.

    CAS  Google Scholar 

  45. W.M. Olson and R.N.R. Mulford: J. Phys. Chem., 1963, vol. 67, pp. 952–4.

    CAS  Google Scholar 

  46. H. Tagawa: J. Nucl. Mater., 1974, vol. 51, pp. 78–89.

    CAS  Google Scholar 

  47. M. Uno, T. Nishi, and M. Takano: Comprehensive Nuclear Materials, Elsevier, Amsterdam, 2012, pp. 61–85.

    Google Scholar 

  48. H. Okamoto: J. Phase Equilibria Diffus., 2005, vol. 26, pp. 642–642.

    Google Scholar 

  49. D. Manara, F. De Bruycker, A.K. Sengupta, R. Agarwal, and H.S. Kamath: Comprehensive Nuclear Materials, Elsevier, Amsterdam, 2012, pp. 87–137.

    Google Scholar 

  50. R. Benz, C.G. Hoffman, and G.N. Rupert: High Temp. Sci., 1969, vol. 1, pp. 342–359.

    CAS  Google Scholar 

  51. M.B. Sears and L.M. Ferris: J. Nucl. Mater., 1969, vol. 32, pp. 101–12.

    CAS  Google Scholar 

  52. A.L. Bowman, G.P. Arnold, W.G. Witteman, T.C. Wallace, and N.G. Nereson: Acta Crystallogr., 1966, vol. 21, pp. 670–1.

    CAS  Google Scholar 

  53. S.C. Vogel: ISRN Mater. Sci., 2013, vol. 2013, pp. 1–24.

    Google Scholar 

  54. H.M. Reiche, S.C. Vogel, and M. Tang: J. Nucl. Mater., 2016, vol. 471, pp. 308–16.

    CAS  Google Scholar 

  55. H. Kai, M. Katsura, and T. Sano: J. Nucl. Sci. Technol., 1968, vol. 5, pp. 43–7.

    CAS  Google Scholar 

  56. J.M. Leitnaker, T.B. Lindemer, and C.M. Fitzpatrick: J. Am. Ceram. Soc., 1970, vol. 53, pp. 479–81.

    CAS  Google Scholar 

  57. M. Katsura and T. Sano: J. Nucl. Sci. Technol., 1966, vol. 3, pp. 194–9.

    CAS  Google Scholar 

  58. M. Ugajin: J. Nucl. Mater., 1971, vol. 40, pp. 175–88.

    CAS  Google Scholar 

  59. Y. Ikeda, M. Tamaki, and G. Matsumoto: J. Nucl. Mater., 1976, vol. 59, pp. 103–11.

    CAS  Google Scholar 

  60. O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, vol. 40, pp. 345–8.

    Google Scholar 

  61. M. Hillert: Thermochim. Acta, 1988, vol. 129, pp. 71–5.

    CAS  Google Scholar 

  62. S.-L. Chen, F. Zhang, F.-Y. Xie, S. Daniel, X.-Y. Yan, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates: JOM, 2003, vol. 55, pp. 48–51.

    CAS  Google Scholar 

  63. S. Chen, W. Cao, C. Zhang, J. Zhu, F. Zhang, Q. Li, and J. Zhang: Calphad, 2016, vol. 55, pp. 63–8.

    CAS  Google Scholar 

  64. Y.-B. Kang and P. Chartrand: Calphad, 2016, vol. 55, pp. 69–75.

    CAS  Google Scholar 

  65. M. Selleby, M. Hillert, and J. Ågren: CALPHAD Comput. Coupling Phase Diagrams Thermochem., 2011, vol. 35, pp. 342–5.

    CAS  Google Scholar 

  66. A.R. Denton and N.W. Ashcroft: Phys. Rev. A, 1991, vol. 43, pp. 3161–4.

    CAS  Google Scholar 

  67. E.H.P. Cordfunke: J. Nucl. Mater., 1975, vol. 56, pp. 319–26.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate noticeable insights that occurred during discussions of non-convex minimization problems with I.Ya. Zabotin from Kazan Federal University, and implementation of convex hull algorithms in relation to the Gibbs energy minimization with S. Chen from CompuTherm, LLC, and A. Voskov from Moscow State University. This work was authored by employees of Clemson University and BWX Technologies, Inc. under Contract No. 80MSFC17C0006 with the National Aeronautics and Space Administration. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so for United States Government purposes. All other rights are reserved by the copyright owner.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur A. Salamatin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 513 kb)

Supporting Information description: Supplementary Information contains a detailed description of the algorithm implemented for the construction of the phase diagrams (Sect. 1 of SI); physical interpretation of expressions used to calculate the Gibbs energies of phases (Sect. 2); details on modelling of interaction energies between species on different sublattices (Sect. 3); data used for the verification of the thermodynamic model (Sect. 4).

Appendix

Appendix

Thermodynamic parameters. The data are from References 27 and 28 (Tables AI, AII, AIII).

Table AI Expansion Coefficients for Energies of \( g_{\text{UN(fcc)}}^{0} \), \( g_{\text{UC(fcc)}}^{0} \), \( g_{{{\text{UC}}_{2} ( {\text{fcc)}}}}^{0} \), \( g_{{{\text{UC}}_{2} ( {\text{tet)}}}}^{0} \), \( g_{\text{UVa(fcc)}}^{0} \), \( g_{\text{UVa(tet)}}^{0} \), and \( g_{{{\text{Va}}_{ 2} {\text{N}}_{ 3} }}^{ 0} \) End-Members
Table AII Reference Terms for the U2N3 End-Member of α-U2N3
Table AIII Expansion Coefficients for Stoichiometric Compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatin, A.A., Peng, F., Rider, K. et al. Non-stoichiometry Effects and Phase Equilibria in the Uranium-Carbon-Nitrogen Ternary System. Metall Mater Trans A 51, 2549–2563 (2020). https://doi.org/10.1007/s11661-020-05688-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05688-2

Navigation