Skip to main content
Log in

Grain Refinement Mechanism of the δ-Ferrite in Steels Through Cerium Addition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To investigate and clarify the roles and mechanism of Ce addition in grain refinement of primary δ-ferrite during solidification of steels, a Fe-4wt pct Si alloy, which can retain the primary δ-ferrite to room temperature after solidification, was used to evaluate the roles of Ce in refining the δ-ferrite. Experimental results showed that addition of small amount of Ce led to significant reduction in average grain size of the as-cast Fe-4wt pct Si alloy from 1906 ± 160 µm without Ce addition down to 998 ± 70 µm at 0.0260 wt pct Ce addition. For the purpose of investigating the grain refinement mechanism of Ce, the Equilib and Phase Diagram modules in the FactSage Software System were used to simulate the formation sequence and calculate fractions of the Ce-containing inclusions above the liquidus in various Fe-4wt pct Si alloys with different Ce, S and O contents. The predicted formation sequence was Ce2O3 > Ce2O2S > Ce2S3/Ce3S4. However, due to the low fraction of the oxide and sulfides formed, only the oxysulfide, Ce2O2S, was observed and verified in the experimental alloys at room temperature in a transmission electron microscopy and a scanning electron microscope that was equipped with the electron backscatter diffraction and energy-dispersive X-ray spectroscopy. Based on the crystallographic calculations using the edge-to-edge matching model together with previously determined orientation relationships between the δ-ferrite and Ce2O2S, it is considered that the heterogeneous nucleation of δ-ferrite on the in situ-formed Ce2O2S particles in the Fe-4wt pct Si alloy melt played a key role in grain refinement of the δ-ferrite. An inductively coupled plasma mass spectrometry was used to measure the amount of Ce solute in the ferrite after conducting low-temperature electrolysis to separate and filter out the Ce compounds. The calculation of the growth restriction parameter (β) using the Phase Diagram module in FactSage Software System indicated an almost negligible role of the Ce solute in the grain refinement of δ-ferrite. The present work clarifies previous uncleanness in understanding the grain refinement mechanism of δ-ferrite through Ce addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.S. Mohanty and J.E. Gruzleski: Acta Metall. Mater., 1995, vol. 43, pp. 2001-12.

    CAS  Google Scholar 

  2. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636-45.

    CAS  Google Scholar 

  3. D.H. StJohn, M. Qian, M.A. Easton, P. Cao and Z. Hildebrand: Mater. Trans. A, 2005, vol. 36, pp. 1669-79.

    CAS  Google Scholar 

  4. Y. Ali, D. Qiu, B. Jiang, F.S. Pan and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.

    CAS  Google Scholar 

  5. M.A. Easton, M. Qian, A. Prasad and D.H. StJohn: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 13-24.

    CAS  Google Scholar 

  6. M. Li, J.M. Li, Q. Zheng, D. Qiu, G. Wang and M.X. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2902-12.

    Google Scholar 

  7. D.S. Sarma, A.V. Karasev and P.G. Jönsson: ISIJ Int., 2009. vol. 49, pp. 1063-74.

    CAS  Google Scholar 

  8. Y. Shan, X. Luo, X. Hu and S. Liu: J. Mater. Sci. Technol., 2011, vol. 27, pp. 352-8.

    CAS  Google Scholar 

  9. J. Fu, Q. Nie, W. Qiu, W. Qiu and J. Sun: J. Mater. Process. Technol., 2018, vol. 253, pp. 43-50.

    CAS  Google Scholar 

  10. Y. Nuri, T. Ohashi, T. Hiromoto and O. Kitamura: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 399-407.

    Google Scholar 

  11. L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo and F.M. Wang: J. Alloys Compd., 2008, vol. 451, pp. 534-7.

    CAS  Google Scholar 

  12. R.B. Tuttle: Int. J. Metalcast., 2016, vol. 10, pp. 1-11.

    Google Scholar 

  13. Y. Ji, M.X. Zhang and H. Ren: Metals, 2018, vol. 8, pp. 884.

    CAS  Google Scholar 

  14. J. Gao, P. Fu, H. Liu and D. Li: Metals, 2015, vol. 5, pp. 383-94.

    CAS  Google Scholar 

  15. L.N. Bartlett and B.R. Avila: Int. J. Metalcast, 2016, vol. 10, pp. 401-20.

    CAS  Google Scholar 

  16. H. Li, A. Mclean, J.W. Rutter and I.D. Sommerville: Metall. Mater. Trans. B, 1988, vol. 19, pp. 383-95.

    CAS  Google Scholar 

  17. A.Q. Wang, M. Li, D.Q. Ma, Q.J. Wu and J.P. Xie: Kem. Ind., 2016, vol. 65, pp. 11-6.

    CAS  Google Scholar 

  18. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-95.

    CAS  Google Scholar 

  19. F.F. Hao, B. Liao, D. Li, L.G. Liu, T. Dan, X.J. Ren and Q.X. Yang: J. Rare Earths, 2011, vol. 29, pp. 609-13.

    CAS  Google Scholar 

  20. P.M. Kelly and M.X. Zhang: Mater. Forum, 1999, vol. 23, pp. 41-62.

    CAS  Google Scholar 

  21. M.X. Zhang and P.M. Kelly: Acta Mater., 2005, vol. 53, pp. 1073-84.

    CAS  Google Scholar 

  22. M.X. Zhang and P.M. Kelly: Acta Mater., 2005, vol. 53, pp. 1085-96.

    CAS  Google Scholar 

  23. M.X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101-70.

    CAS  Google Scholar 

  24. M.X. Zhang, P.M. Kelly, M.A. Easton and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-38.

    CAS  Google Scholar 

  25. D. Qiu, M.X. Zhang and P.M. Kelly: Scripta Mater., 2009, vol. 61, pp. 312-5.

    CAS  Google Scholar 

  26. D. Qiu, M.A. Zhang, J.A. Taylor and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052-9.

    CAS  Google Scholar 

  27. M. Zhang, P.M. Kelly, M. Qian and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 3261-70.

    CAS  Google Scholar 

  28. Z. Liu, D. Qiu, F. Wang, J.A. Taylor and M. Zhang: Acta Mater., 2014, vol. 79, pp. 315-26.

    CAS  Google Scholar 

  29. Z. Liu, D. Qiu, F. Wang, J.A. Taylor and M. Zhang: J. Appl. Crystallogr., 2015, vol. 48, pp. 890-900.

    CAS  Google Scholar 

  30. A. Cibula: J. Inst. Met., 1949, vol. 76, pp. 321-60.

    CAS  Google Scholar 

  31. J.W. Rutter and B. Chalmers: Can. J. Phys., 1953, vol. 31, pp. 15-39.

    CAS  Google Scholar 

  32. W.A. Tiller, K.A. Jackson, J.W. Rutter and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428-37.

    CAS  Google Scholar 

  33. L.A. Tarshis, J.L. Walker and J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589-97.

    CAS  Google Scholar 

  34. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229-37.

    CAS  Google Scholar 

  35. M.A. Easton and D.H. StJohn: Acta Mater., 2001, vol. 49, pp.1867-78.

    CAS  Google Scholar 

  36. Z. Fan, F. Gao, L. Zhou and S.Z. Lu: Acta Mater., 2018, vol. 152, pp. 248-57.

    CAS  Google Scholar 

  37. D.H. Stjohn, M.A. Easton, M.Qian and J.A.Taylor: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2935-49.

    Google Scholar 

  38. V.E. Bazhenov: Mater. Sci. Technol., 2015, vol. 31, pp. 1305-12.

    CAS  Google Scholar 

  39. H. Xu, L.D. Xu, S.J. Zhang and Q. Han: Scripta Mater., 2006, vol. 54, pp. 2191-6.

    CAS  Google Scholar 

  40. M. Easton and D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1625-33.

    CAS  Google Scholar 

  41. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-70.

    CAS  Google Scholar 

  42. Z.L. Liu, F. Wang, D. Qiu, J.A. Taylor and M.X. Zhang: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4025-30.

    Google Scholar 

  43. M. Li, J.M. Li, Q. Zheng, D. Qiu, G. Wang and M.X. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2235-47.

    Google Scholar 

  44. Y.P. Ji, Y.M. Li, M.X. Zhang and H.P. Ren: Metall. Mater. Trans. A, 2019, vol. 50, pp. 1787-94.

    Google Scholar 

  45. R. Tuttle: Int. J. Metalcast., 2012, vol. 6, pp. 51-65.

    CAS  Google Scholar 

  46. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio, 1990.

    Google Scholar 

  47. Y. Ali, D. Qiu, B. Jiang, F.S. Pan and M.X. Zhang: Scripta Mater., 2016, vol. 114, pp. 103-7.

    CAS  Google Scholar 

  48. L.J. Yue, L.L. Wang and L.M. Wang: J. Rare Earths, 2014, vol. 35, pp. 20-6.

    CAS  Google Scholar 

  49. F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh and W.S. Hwang: Materials, 2017, vol. 9, pp. 1-19.

    CAS  Google Scholar 

  50. L.A. Smirnov, V.A. Rovnushkin, A.S. Oryshchenko, G.Y. Kalinin and V.G. Milyuts: Metallurgist, 2016, vol. 59, pp. 1053-61.

    CAS  Google Scholar 

  51. Y. Li, C. Liu, T. Zhang, M. Jiang and C. Peng: Metall. Mater. Trans. B, 2016, vol. 48, pp. 1-10.

    Google Scholar 

  52. C. Yang, Y. Luan, D. Li and Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298-308.

    Google Scholar 

  53. M. Mikami and S. Nakamura: J. Alloys Compd., 2006, vol, 408, pp. 687-92.

    Google Scholar 

  54. S. Ohba, Y. Saito and Y. Noda: Acta Crystallogr. Sect. A, 1982, vol, 38, pp. 725-9.

    Google Scholar 

  55. B. Wu, M. Zinkevich, F. Aldinger, D.Z. Wen and L. Chen: J. Solid State Chem., 2007, vol. 180, pp. 3280-7.

    CAS  Google Scholar 

  56. W. H. Zachariasen: Acta Crystallogr., 1948, vol. 1, pp. 265-8.

    CAS  Google Scholar 

  57. A. Dönni, A. Furrer, P. Fischer and F. Hulliger: Phys. B, 1993, vol. 186-188, pp. 541-3.

    Google Scholar 

  58. T. Schleid and P. Lauxmann: ChemInform, 1999, vol. 30, pp. 1053-5.

    Google Scholar 

  59. Q. Ma: Acta Mater., 2007, vol. 55, pp. 943-53.

    Google Scholar 

  60. D. Qiu and M.X. Zhang: J. Alloys Compd., 2009, vol. 488, pp. 260-4.

    CAS  Google Scholar 

  61. H.T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol. 60, pp. 1528-37.

    CAS  Google Scholar 

  62. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-35.

    CAS  Google Scholar 

  63. Q. Ma, D.H. Stjohn and M.T. Frost: Scripta Mater., 2004, vol. 50, pp. 1115-9.

    CAS  Google Scholar 

  64. M. Easton and D. Stjohn: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1911-20.

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the funding support from the National Natural Science Foundation of China (Grant Nos. 51761034 and 51261018) and the Natural Science Foundation of Inner Mongolia in China (Grant No. 2017MS0512). Additionally, the authors thank the financial support from the Inner Mongolia Science & Technology Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. X. Zhang or H. P. Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 15, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y.P., Li, Y.M., Zhang, M.X. et al. Grain Refinement Mechanism of the δ-Ferrite in Steels Through Cerium Addition. Metall Mater Trans A 51, 1707–1718 (2020). https://doi.org/10.1007/s11661-020-05645-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05645-z

Navigation