Skip to main content
Log in

New Triazole and Isoxazole Compounds as Corrosion Inhibitors for Cu-Ni (90/10) Alloy and Galvanized Steel Substrates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three organic compounds containing azole rings 1-benzyl-4-phenyl-1H-1,2,3-triazole (I1), 5-phenyl-3-propylisoxazole (I2), and 3,5-diphenylisoxazole (I3) were synthesized and characterized as corrosion inhibitors on galvanized steel and copper-nickel (Cu-Ni, 90/10) substrates. The three tested azole inhibitors acted as corrosion inhibitors on galvanized steel in the presence of real cooling water used as electrolyte. Electrochemical performance indicated that the presence of heteroatoms, such as N and O, with free pair electrons, the chain length, and the aromatic ring plays an important role in the capacity to inhibit corrosion of galvanized steel. 3,5-diphenylisoxazole (I3) has the best inhibition activity with jcorr of 2.04 × 10−7 (5 ppm), 7.57 × 10−8 (10 ppm), and 1.73 × 10−8 (20 ppm) A cm−2, followed by compounds I1 and I2. The synthesized compounds are comparable or even higher than the electrochemical performance of commercial inhibitor tolyltriazole (TTA, jcorr = 3.06 × 10−8 A cm−2). Conversely, for Cu-Ni (90/10) substrates, commercial TTA with 20 ppm displayed the lowest corrosion current densities (jcorr = 3.20 × 10−8 A cm−2) through a characteristic anodic pseudo-passivation; however, pits were observed after ~550 mVAg/AgCl. In contrast, the synthesized compounds tended to suppress anodic copper dissolution at positive potentials but, in the best case, displayed greater corrosion rates I3 (1.463 mils per year (MPY)), I2 (1.515 MPY), and I1 (0.677 MPY) in comparison with TTA (0.091 MPY). The low inhibition efficiency (IE) of synthesized compounds is correlated to the weak absorption on the copper surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Colombo, L. Oldani, and S.P. Trasatti: Eng. Fail. Analy., 2018, vol. 84, pp. 46–58.

    Article  CAS  Google Scholar 

  2. J. Ma, Y. Wang, and X. Feng: Energy, 2018, vol. 150, pp. 797–815.

    Article  Google Scholar 

  3. K. Rahmani: Appl. Therm. Eng., 2017, vol. 114, pp. 849–56.

    Article  CAS  Google Scholar 

  4. J.C. Hensley: Cooling Tower Fundamentals, 2nd ed., The Marley Cooling Tower Company, Overland Park, KS, 2009, pp. 1–116.

    Google Scholar 

  5. J.W. McCoy: The Chemical Treatment of Cooling Water, 2nd ed., Chemical Publishing Company Co. Inc., New York, NY, 1983, pp. 1–301.

    Google Scholar 

  6. I. Gurrappa: J. Mater. Process. Technol., 2005, vol. 166, pp. 256–67.

    Article  CAS  Google Scholar 

  7. C. Schulze, B. Raabe, C. Herrmann, and S. Thiede: Proc. CIRP, 2018, vol. 69, pp. 277–82.

    Article  Google Scholar 

  8. P. Imani-Mofrad, Z.H. Saeed, and M. Shanbedi: Energy Conv. Manag., 2016, vol. 127, pp. 199–207.

    Article  CAS  Google Scholar 

  9. P. Shahali, M. Rahmati, S.R. Alavi, and A. Sedaghat: Int. J. Refriger., 2016, vol. 65, pp. 80–91.

    Article  Google Scholar 

  10. A.C.C. Tomás, S.D.O. Araujo, M.D. Paes, A.R.M. Primo, J.A.P. Da Costa, and A.A.V. Ochoa: Appl. Therm. Eng., 2018, vol. 144, pp. 444–56.

    Article  CAS  Google Scholar 

  11. X.-Q. Zhang, X. Han, X. Zhang, S.-Q. Yang, and M.-X. Du: Sep. Purif. Technol., 2020, vol. 234, p. 116045.

  12. N. Gilani, A. DoustaniHendijani, and R. Shirmohammadi: Appl. Therm. Eng., 2019, vol. 154, pp. 180–95.

    Article  Google Scholar 

  13. M. Rahmati, S.R. Alavi, and M.R. Tavakoli: Energy Conv. Manag., 2016, vol. 126, pp. 971–81.

    Article  Google Scholar 

  14. N. Walraven, W. Pool, and C. Chapman: J. Water Process Eng., 2016, vol. 13, pp. 196–205.

    Article  Google Scholar 

  15. X. Qi, Y. Liu, Q. Guo, J. Yu, and S. Yu: Energy, 2016, vol. 97, pp. 435–43.

    Article  Google Scholar 

  16. R. Hassanzadeh and M. Khalili: J. Build. Eng., 2018, vol. 18, pp. 331–42.

    Article  Google Scholar 

  17. M.R. Choudhury, R.D. Vidic, and D.A. Dzombak: Arab. J. Sci. Eng., 2014, vol. 39, pp. 7741–49.

    Article  CAS  Google Scholar 

  18. E. Ilhan-Sungur, D. Ozuolmez, A. Çotuk, N. Cansever, and G. Muyzer: Anaerobe, 2017, vol. 43, pp. 27–34.

    Article  CAS  Google Scholar 

  19. E. Ilhan-Sungur and A. Çotuk: Corr. Sci., 2010, vol. 52, pp. 161–71.

    Article  CAS  Google Scholar 

  20. J. Narenkumar, P. Elumalai, S. Subashchandrabose, M. Megharaj, R. Balagurunathan, K. Murugan, and A. Rajasekar: Chemosphere, 2019, vol. 222, pp. 611–18.

    Article  CAS  Google Scholar 

  21. H.-H. Ou, Q.T.P. Tran, and P.-H. Lin: Corr. Sci., 2018, vol. 133, pp. 231–39.

    Article  CAS  Google Scholar 

  22. M.E. Mitzithra, F. Deby, J.P. Balayssac, and J. Salin: Nucl. Eng. Des., 2015, vol. 288, pp. 42–55.

    Article  CAS  Google Scholar 

  23. A. Dhorat, M.A. Al-Obaidi, and I.M. Mujtaba: Therm. Sci. Eng. Progr., 2019, vol. 9, pp. 30–43.

    Article  Google Scholar 

  24. R. Touir, M. Cenoui, M. El Bakri, and M. Ebn Touhami: Corr. Sci., 2008, vol. 50, pp. 1530–37.

    Article  CAS  Google Scholar 

  25. L.J. Yang, L. Chen, X.Z. Du, and Y.P. Yang: Int. J. Therm. Sci., 2013, vol. 64, pp. 178–87.

    Article  Google Scholar 

  26. Y. Lu, Z. Guan, H. Gurgenci, K. Hooman, S. He, and D. Bharathan: Energy Conv. Manag., 2015, vol. 91, pp. 238–48.

    Article  Google Scholar 

  27. H.T. Liao, L.J. Yang, X.Z. Du, and Y.P. Yang: Int. J. Therm. Sci., 2015, vol. 94, pp. 178–92.

    Article  Google Scholar 

  28. M. Goodarzi and R. Ramezanpour: Energy Conv. Manag., 2014, vol. 77, pp. 243–49.

    Article  Google Scholar 

  29. M.A. Goudarzi: Energy, 2013, vol. 62, pp. 164–72.

    Article  Google Scholar 

  30. L. Chen, L. Yang, X. Du, and Y. Yang: Appl. Therm. Eng., 2016, vol. 106, pp. 537–50.

    Article  Google Scholar 

  31. G.O. Ilevbare and G.T. Burstein: Corr. Sci., 2003, vol. 45, pp. 1545–69.

    Article  CAS  Google Scholar 

  32. Q. Ma, S. Qi, X. He, Y. Tang, and G. Lu: Corr. Sci., 2017, vol. 129, pp. 91–101.

    Article  CAS  Google Scholar 

  33. K. Rahmani, R. Jadidian, and S. Haghtalab: Desalination, 2016, vol. 393, pp. 174–85.

    Article  CAS  Google Scholar 

  34. Y. Qiang, S. Zhang, L. Guo, X. Zheng, B. Xiang, and S. Chen: Corr. Sci., 2017, vol. 119, pp. 68–78.

    Article  CAS  Google Scholar 

  35. L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya, and C. Kaya: Appl. Surf. Sci., 2017, vol. 406, pp. 301–06.

    Article  CAS  Google Scholar 

  36. N. Gladkikh, Y. Makarychev, M. Maleeva, M. Petrunin, L. Maksaeva, A. Rybkina, A. Marshakov, and Y. Kuznetsov: Progr. Organ. Coat., 2019, vol. 132, pp. 481–89.

    Article  CAS  Google Scholar 

  37. N. Kovačević and A. Kokalj: Mater. Chem. Phys., 2012, vol. 137, pp. 331–39.

    Article  CAS  Google Scholar 

  38. A. Popova, M. Christov, and A. Zwetanova: Corr. Sci., 2007, vol. 49, pp. 2131–43.

    Article  CAS  Google Scholar 

  39. R. Subramanian and V. Lakshminarayanan: Corr. Sci., 2002, vol. 44, pp. 535–54.

    Article  CAS  Google Scholar 

  40. M. Finšgar, B. Petovar, K. Xhanari, and U. Maver: Corr. Sci., 2016, vol. 111, pp. 370–81.

    Article  CAS  Google Scholar 

  41. A. Zarrouk, B. Hammouti, T. Lakhlifi, M. Traisnel, H. Vezin, and F. Bentiss: Corr. Sci., 2015, vol. 90, pp. 572–84.

    Article  CAS  Google Scholar 

  42. A. Dutta, S.K. Saha, P. Banerjee, and D. Sukul: Corr. Sci., 2015, vol. 98, pp. 541–50.

    Article  CAS  Google Scholar 

  43. L. Li, X. Zhang, S. Gong, H. Zhao, Y. Bai, Q. Li, and L. Ji: Corr. Sci., 2015, vol. 99, pp. 76–88.

    Article  CAS  Google Scholar 

  44. G. Sığırcık, T. Tüken, and M. Erbil: Corr. Sci., 2016, vol. 102, pp. 437–45.

    Article  CAS  Google Scholar 

  45. N. Kıcır, G. Tansuğ, M. Erbil, and T. Tüken: Corr. Sci., 2016, vol. 105, pp. 88–99.

    Article  CAS  Google Scholar 

  46. B. Tan, S. Zhang, H. Liu, Y. Qiang, W. Li, L. Guo, and S. Chen: J. Taiwan Inst. Chem. Eng., 2019, vol. 102, pp. 424–37.

    Article  CAS  Google Scholar 

  47. H. Wang, Y. Hao, S. Chen, M. Cheng, C. Li, S. Sun, and S. Hu: Corr. Sci., 2018, vol. 137, pp. 33–42.

    Article  CAS  Google Scholar 

  48. E. Garcia-Ochoa, S.J. Guzmán-Jiménez, J.G. Hernández, T. Pandiyan, J.M. Vásquez-Pérez, and J. Cruz-Borbolla: J. Molec. Struct., 2016, vol. 1119, pp. 314–24.

    Article  CAS  Google Scholar 

  49. J.V. Custódio, S.M.L. Agostinho, and A.M.P. Simões: Electrochim. Acta, 2010, vol. 55, pp. 5523–31.

    Article  CAS  Google Scholar 

  50. L. Jiang, Y. Lan, Y. He, Y. Li, Y. Li, and J. Luo: Thin Solid Films, 2014, vol. 556, pp. 395–404.

    Article  CAS  Google Scholar 

  51. T. Kosec, D.K. Merl, and I. Milošev: Corr. Sci., 2008, vol. 50, pp. 1987–97.

    Article  CAS  Google Scholar 

  52. F. Grillo, D.W. Tee, S.M. Francis, H. Früchtl, and N.V. Richardson: Nanoscale, 2013, vol. 5, pp. 5269–73.

    Article  CAS  Google Scholar 

  53. R. Ravichandran, S. Nanjundan, and N. Rajendran: Appl. Surf. Sci., 2004, vol. 236, pp. 241–50.

    Article  CAS  Google Scholar 

  54. J.M. Bastidas, P. Pinilla, E. Cano, J.L. Polo, and S. Miguel: Corr. Sci., 2003, vol. 45, pp. 427–49.

    Article  Google Scholar 

  55. K.H. Wall and I. Davies: J. Appl. Chem., 1965, vol. 15, pp. 389–92.

    Article  CAS  Google Scholar 

  56. A. Fateh, M. Aliofkhazraei, and A.R. Rezvanian: Arab. J. Chem., 2017, vol. 13, pp. 481-544

    Article  CAS  Google Scholar 

  57. M.B. PetrovićMihajlović, M.B. Radovanović, Ž.Z. Tasić, and M.M. Antonijević: J. Molec. Liq., 2017, vol. 225, pp. 127–36.

    Article  CAS  Google Scholar 

  58. Y. Yan, H. Shi, J. Wang, F. Liu, E.-H. Han: Acta Metall. Sinica, 2019, vol. 32, pp. 471–80.

    Article  CAS  Google Scholar 

  59. P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei, and A.A. Rahim: Chem. Eng. Comm., 2016, vol. 203, pp. 1145–56.

    Article  CAS  Google Scholar 

  60. C.M. Fernandes, L.X. Alvarez, N.E. dos Santos, A.C. MaldonadoBarrios, and E.A. Ponzio: Corr. Sci., 2019, vol. 149, pp. 185–94.

    Article  CAS  Google Scholar 

  61. A. Espinoza-Vázquez, F.J. Rodríguez-Gómez, B.I. Vergara-Arenas, L. Lomas-Romero, D. Angeles-Beltrán, G.E. Negrón-Silva, and J.A. Morales-Serna: RSC Adv., 2017, vol. 7, pp. 24736–24746.

    Article  Google Scholar 

  62. A.L.G.M. Stern: J. Electrochem. Soc., 1957, vol. 104, pp. 56–63.

    Article  CAS  Google Scholar 

  63. F. Friscourt and G.-J. Boons: Org. Lett., 2010, vol. 12, pp. 4936–39.

    Article  CAS  Google Scholar 

  64. S. Zhai, Y. Ma, Y. Chen, D. Li, J. Cao, Y. Liu, M. Cai, X. Xie, Y. Chen, and X. Luo: Polym. Chem., 2014, vol. 5, pp. 1285–97.

    Article  CAS  Google Scholar 

  65. H. Li, Q. Zheng, and C. Han: Analyst, 2010, vol. 135, pp. 1360–64.

    Article  CAS  Google Scholar 

  66. H. Naeimi, S. Dadashzadeh, and M. Moradian: Res. Chem. Intermed., 2015, vol. 41, pp. 2687–95.

    Article  CAS  Google Scholar 

  67. H. Naeimi and R. Shaabani: Ultrason. Sonochem., 2017, vol. 34, pp. 246–54.

    Article  CAS  Google Scholar 

  68. S.G. Aziz, S.A. Elroby, A. Alyoubi, O.I. Osman, and R. Hilal: J. Molec. Model., 2014, vol. 20, p. 2078.

    Article  CAS  Google Scholar 

  69. R. Huisgen: Ang. Chem. Int. Ed. Engl., 1963, vol. 2, pp. 633–45.

    Article  Google Scholar 

  70. W.D.G. Brittain, B.R. Buckley, and J.S. Fossey: ACS Cataly., 2016, vol. 6, pp. 3629–36.

    Article  CAS  Google Scholar 

  71. G. Cheng and X. Cui: Organ. Lett., 2013, vol. 15, pp. 1480–83.

    Article  CAS  Google Scholar 

  72. P.A. Ledin, F. Friscourt, J. Guo, and G.-J. Boons: Chem. Eur. J., 2011, vol. 17, pp. 839–46.

    Article  CAS  Google Scholar 

  73. I.A. Muhammad Naeem Ahmed, W. Bo, S. Hammed, B. Ahmad Khan, K. Ansar Yasin, and M. Moazzam Nasser: Chin. J. Struct. Chem., 2014, vol. 12, pp. 1749–56.

    Google Scholar 

  74. P. Grunanger and P. Vita-Finzi: Chemistry of Heterocyclic Compounds, John Wiley & Sons, Inc., New York, NY, 1991, pp. 1–416.

    Google Scholar 

  75. J. Stothers: Carbon-13 NMR Spectroscopy: Organic Chemistry, A Series of Monographs, 24th volume, Academic Press, New York, NY, 1972, pp. 1–547.

    Google Scholar 

  76. L. Di Nunno, A. Scilimati, and P. Vitale: Tetrahedron, 2002, vol. 58, pp. 2659–65.

    Article  Google Scholar 

  77. C.D. Turner and M.A. Ciufolini: Rev. Acc., 2011, vol. 2011, pp. 410–28.

    Google Scholar 

  78. A.M. Jawalekar, E. Reubsaet, F.P.J.T. Rutjes, and F.L. van Delft: Chem. Commun., 2011, vol. 47, pp. 3198–3200.

    Article  CAS  Google Scholar 

  79. G.K. Gomma: Mater. Chem. Phys., 1998, vol. 56, pp. 27–34.

    Article  CAS  Google Scholar 

  80. H. Rahmani and E.I. Meletis: Appl. Surf. Sci., 2019, vol. 497, p. 143759.

    Article  CAS  Google Scholar 

  81. E.-S.M. Sherif, R.M. Erasmus, and J.D. Comins: Electrochim. Acta, 2010, vol. 55, pp. 3657–63.

    Article  CAS  Google Scholar 

  82. M.S. El-Sayed: Int. J. Electrochem. Sci., 2012, vol. 7, pp. 1884–97.

    CAS  Google Scholar 

  83. W.A. Badawy, K.M. Ismail, and A.M. Fathi: Electrochim. Acta, 2006, vol. 51, pp. 4182–89.

    Article  CAS  Google Scholar 

  84. Ž.Z. Tasić, M.B. PetrovićMihajlović, M.B. Radovanović, A.T. Simonović, and M.M. Antonijević: J. Molec. Struct., 2018, vol. 1159, pp. 46–54.

    Article  CAS  Google Scholar 

  85. D. Gopi, E.-S.M. Sherif, M. Surendiran, D.M. AngelineSakila, and L. Kavitha: Surf. Interface Analy., 2015, vol. 47, pp. 618–25.

    Article  CAS  Google Scholar 

  86. D. Gopi, K.M. Govindaraju, V. CollinsArunPrakash, D.M. AngelineSakila, and L. Kavitha: Corr. Sci., 2009, vol. 51, pp. 2259–65.

    Article  CAS  Google Scholar 

  87. A.C. Bastos, M.G.S. Ferreira, and A.M. Simões: Progr. Organ. Coat., 2005, vol. 52, pp. 339–50.

    Article  CAS  Google Scholar 

  88. M. Mouanga, P. Berçot, and J.Y. Rauch: Corr. Sci., 2010, vol. 52, pp. 3984–92.

    Article  CAS  Google Scholar 

  89. M. Mouanga and P. Berçot: Corr. Sci., 2010, vol. 52, pp. 3993–4000.

    Article  CAS  Google Scholar 

  90. K. Tebbji, I. Bouabdellah, A. Aouniti, B. Hammouti, H. Oudda, M. Benkaddour, and A. Ramdani: Mater. Lett., 2007, vol. 61, pp. 799–804.

    Article  CAS  Google Scholar 

  91. Z. Tang: Curr. Opin. Solid State Mater. Sci., 2019, vol. 23, p. 100759.

    Article  Google Scholar 

  92. L.L. Liao, S. Mo, J.L. Lei, H.Q. Luo, and N.B. Li: J. Coll. Interface Sci., 2016, vol. 474, pp. 68–77.

    Article  CAS  Google Scholar 

  93. C. Shi, Y. Wang, Y. Yu, J. Li, D. Zhang, and L. Gao: Corr. Sci., 2018, vol. 145, pp. 100–08.

    Article  CAS  Google Scholar 

  94. D.S. Chauhan, M.A. Quraishi, C. Carrière, A. Seyeux, P. Marcus, and A. Singh: J. Mol. Liq., 2019, vol. 289, p. 111113.

    Article  CAS  Google Scholar 

  95. S.U. Ofoegbu, T.L.P. Galvão, J.R.B. Gomes, J. Tedim, H.I.S. Nogueira, M.G.S. Ferreira, and M.L. Zheludkevich: Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 6113–29.

    Article  CAS  Google Scholar 

  96. A.-R. El-Sayed, H.S. Mohran, and H.M. AbdEl-Lateef: J. Power Sources, 2010, vol. 195, pp. 6924–36.

    Article  CAS  Google Scholar 

  97. S. Savita, P. Mourya, N. Chaubey, V.K. Singh, and M.M. Singh: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 47–57.

    Article  CAS  Google Scholar 

  98. T. Tüken, N. Kıcır, N.T. Elalan, G. Sığırcık, and M. Erbil: Appl. Surf. Sci., 2012, vol. 258, pp. 6793–99.

    Article  CAS  Google Scholar 

  99. H. OtmacicCurkovic, E. Stupnisek-Lisac, and H. Takenouti: Corr. Sci., 2010, vol. 52, pp. 398–405.

    Article  CAS  Google Scholar 

  100. F. King: “Critical Review of the Literature on the Corrosion of Copper by Water,” TR-10-69, Svensk Kärnbränslehantering AB, Swedish Nuclear Fuel, and Waste Management Co., Stockholm, 2010.

Download references

Acknowledgments

One of the authors (DEO-DLT) is grateful for her postgraduate fellowship to Consejo Nacional de Ciencia y Tecnología (CONACYT), México; Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA), México; and Secretaría de Investigación y Posgrado (SIP) del Instituto Politécnico Nacional (IPN), México. The authors are also grateful for the financial support provided by the Instituto Politécnico Nacional through the SIP2019-6650, SIP2019-6670, and SIP2019-6718 projects; CONACyT CB2015-252181 and C-2014-1905 projects; as well as SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Domínguez-Crespo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Crespo, M.A., Zepeda-Vallejo, L.G., Torres-Huerta, A.M. et al. New Triazole and Isoxazole Compounds as Corrosion Inhibitors for Cu-Ni (90/10) Alloy and Galvanized Steel Substrates. Metall Mater Trans A 51, 1822–1845 (2020). https://doi.org/10.1007/s11661-019-05615-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05615-0

Navigation