Skip to main content
Log in

On the Microstructure of Off-Eutectic Au-Ge Joints: A High-Temperature Joint

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Joining delicate electronic components for high-temperature applications is challenging. Regular soldering with lead-free or lead-based materials is typically not suitable for high-temperature applications due to their low melting points. Using off-eutectic compounds for joints offer an easy and gentle process creating joints that can be formed at a lower process temperature than the final operation temperature. Microstructural evolution near the eutectic melting point is key to be able to form reliable joints. A layered Au/eutectic Au-Ge/Au structure was used to form Au-rich off-eutectic Au-Ge joints. Columnar-like structures of primary \( \alpha \)-phase (Au) protruded through a Ge-rich off-eutectic Au-Ge mixture at the center of the joint. These structures connect the joined pieces with a single solid phase with a melting point of ca. 1064 °C. The microstructure coarsened when exposed to temperatures between 300 °C and 380 °C, i.e., near the eutectic melting point at 361 °C. Ge diffused and accumulated along grain boundaries between Au grains. Annealing above the eutectic melting point, Ge rapidly diffused and formed larger colonies of pure Ge surrounded by a Au matrix. This accords well with our previously published results demonstrating shear strength capacity of similar joints at temperatures well above the eutectic temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Reproduced with permission from Ref. [20]

Fig. 10

Reproduced with permission from Ref. [20]

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. 1 V.R. Manikam and K.Y. Cheong: Components, Packag. Manuf. Technol. IEEE Trans., 2011, vol. 1, pp. 457–478.

    CAS  Google Scholar 

  2. F. Roccaforte, P. Fiorenza, G. Greco, R. Lo-Nigro, F. Giannazzo, F. Iucolano, M. Saggio, R. Lo, F. Giannazzo, F. Iucolano, and M. Saggio: Microelectron. Eng., 2018, vol. 187–188, pp. 66–77.

    Article  Google Scholar 

  3. 3 W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  CAS  Google Scholar 

  4. W.D. MacDonald and T.W. Eagar: Met. Sci. Join., 1992, pp. 93–100.

  5. 5 W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25.

    Article  CAS  Google Scholar 

  6. 6 W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

    Article  CAS  Google Scholar 

  7. 7 G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.

    Article  CAS  Google Scholar 

  8. 8 L. Bernstein: J. Electrochem. Soc., 1966, vol. 113, pp. 1282–9.

    Article  CAS  Google Scholar 

  9. 9 L. Bernstein and H. Bartholomew: Trans. Metall. Soc. Aime, 1966, vol. 236, pp. 405–12.

    CAS  Google Scholar 

  10. 10 H. Liu, K. Wang, K.E. Aasmundtveit, and N. Hoivik: J. Electron. Mater., 2012, vol. 41, pp. 2453–62.

    Article  CAS  Google Scholar 

  11. 11 K.S. Siow: J. Electron. Mater., 2014, vol. 43, pp. 947–61.

    Article  CAS  Google Scholar 

  12. 12 F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, and M.C. Hamilton: IEEE Trans. Power Electron., 2017, vol. 32, pp. 7083–95.

    Article  Google Scholar 

  13. 13 S.A. Paknejad and S.H. Mannan: Microelectron. Reliab., 2017, vol. 70, pp. 1–11.

    Article  CAS  Google Scholar 

  14. 14 V. Chidambaram, H.B. Yeung, and G. Shan: J. Electron. Mater., 2012, vol. 41, pp. 2107–17.

    Article  CAS  Google Scholar 

  15. 15 A. Drevin-Bazin, F. Lacroix, and J.F. Barbot: J. Electron. Mater., 2014, vol. 43, pp. 695–701.

    Article  CAS  Google Scholar 

  16. S. Tanimoto, K. Matsui, Y. Murakami, H. Yamaguchi, and H. Okumura: in IMAPS Int. Conf. High Temp. Election. (HiTEC), IMAPS, Albuquerque, NM, 2010.

  17. 17 H. Okamoto and T.B. Massalski: Bull. Alloy Phase Diagrams, 1983, vol. 4, pp. 190–8.

    Article  Google Scholar 

  18. 18 H. Okamoto and T.B. Massalski: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 601–10.

    Article  Google Scholar 

  19. 19 H. Okamoto: J. Phase Equilibria Diffus., 2004, vol. 25, pp. 197–8.

    Article  CAS  Google Scholar 

  20. 20 A. Larsson, T.A. Tollefsen, and K.E. Aasmundtveit: Microelectron. Reliab., 2019, vol. 99, pp. 31–43.

    Article  CAS  Google Scholar 

  21. A. Larsson, T.A. Tollefsen, O.M. Løvvik, and K.E. Aasmundtveit: in Eur. Microelectron. Packag. Conf. (EMPC), IMAPS, Warsaw, 2017.

  22. A. Larsson, C.B. Thoresen, and T. Aamli: in Proc. Tech. Program—Pan Pac. Microelectron. Symp. (Pan Pacific), IEEE, Kauai, HI, 2019.

  23. A. Larsson and C.B. Thoresen: IEEE Trans. Compon., Packag. Manuf. Technol., 2019, p. 11.

  24. 24 R.M. Waghorne, V.G. Rivlin, and G.I. Williams: J. Phys. F Met. Phys., 1976, vol. 6, pp. 147–56.

    Article  CAS  Google Scholar 

  25. 25 R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagrams, 1980, vol. 1, pp. 51–4.

    Article  Google Scholar 

  26. 26 J. Wang, C. Leinenbach, and M. Roth: J. Alloy. Compd., 2009, vol. 481, pp. 830–6.

    Article  CAS  Google Scholar 

  27. MIL-STD-883H, 2010.

  28. 28 F.C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, 2008.

    Book  Google Scholar 

  29. 29 R.J.D. Tilley: Understanding Solids : The Science of Materials, John Wiley & Sons, Inc., Chichester, UK, 2004.

    Book  Google Scholar 

  30. 30 H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, 2nd edn., ASM International, United States of America, 2010.

    Google Scholar 

  31. 31 G. Humpston and D.M. Jacobson: Principles of Soldering, ASM International, 2004.

    Google Scholar 

  32. J.D. Verhoeven: Fundamentals of Physical Metallurgy. Wiley, Hoboken, 1975, pp. 169-215.

    Google Scholar 

  33. M.E. Glicksman: Principles of Solidification, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7344-3

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Christian Thoresen (USN). The authors would also like to acknowledge Torleif A. Tollefsen (TEGma AS) and Ole Martin Løvvik (SINTEF) for their support in the project. We would like to thank TECHNI AS, TEGma AS, and The Norwegian Research Council for financial support of the project (Project No.: 244915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Larsson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 23, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsson, A., Aamundtveit, K.E. On the Microstructure of Off-Eutectic Au-Ge Joints: A High-Temperature Joint. Metall Mater Trans A 51, 740–749 (2020). https://doi.org/10.1007/s11661-019-05530-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05530-4

Navigation