Skip to main content
Log in

Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study investigates the effect of grain/sub-grain size, boundary misorientation, and dislocation density on mechanical properties of nanostructured aluminum. A fully recrystallized high-purity aluminum was deformed to different strains from low to ultrahigh strains by a combination of conventional cold rolling and accumulative roll-bonding, followed by annealing for recovery and structural coarsening, to produce sub-grained samples dominated by low-angle boundaries and ultrafine-grained samples dominated by high-angle boundaries. The ultrafine-grained samples showed unusual discontinuous yielding and had a very high strength, which was positively deviated from the extrapolation of the Hall–Petch curve in coarse grains. On the other hand, sub-grained samples showed continuous yielding, and the strength was lower than that of ultrafine-grained samples at the same structural size. It is suggested that in the ultrafine-grained samples, due to lack of dislocation sources in the grains, extremely high stress is required for yielding, which is responsible for the unexpected discontinuous yielding and extra Hall–Petch strengthening. On the other hand, in the sub-grained samples, dislocations in the low-angle dislocation boundaries may act as active dislocation sources, leading to a lower yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adopted from Ref. [33]

Fig. 8

Adopted from Ref. [33] (Color figure online)

Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747-753.

    Article  Google Scholar 

  2. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    CAS  Google Scholar 

  3. L.L. Shaw: J. Metals (JOM), 2000, vol. 52, pp. 41-45.

    CAS  Google Scholar 

  4. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu: J. Metals (JOM), 2006, vol. 58, pp. 33-39.

    Google Scholar 

  5. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida: CIRP AnnalsManufacturing Tech., 2008, vol. 57, pp. 716-735.

    Article  Google Scholar 

  6. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  7. R.Z. Valiev, A.P. Zhilyaev and T.G. Langdon: Bulk Nanostructured Materials: Fundamentrals and Applications, Wiley, Hoboken, NJ, 2014.

    Google Scholar 

  8. R.Z. Valiev and Y. Zhu: Trans. Mater. Res. Soc. Japan, 2015, vol. 40, pp. 309-318.

    Article  Google Scholar 

  9. C.Y. Yu, P.W. Kao and C.P. Cheng: Acta Mater., 2005, vol. 53, pp. 4019-4028.

    Article  CAS  Google Scholar 

  10. N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.

    Article  CAS  Google Scholar 

  11. G.M. Le, A. Godfrey and N. Hansen: Mater. Des., 2013, vol. 49, pp. 360-367.

    Article  CAS  Google Scholar 

  12. K.N. Zhu, A. Godfrey, N. Hansen and X. D. Zhang: Mater. Des., 2017, vol. 117, pp. 95-103.

    Article  CAS  Google Scholar 

  13. S. Gao, M. Chen, S. Chen, N. Kamikawa, A. Shibata and N. Tsuji: Mater. Trans., 2014, vol. 55, pp. 73-77.

    Article  CAS  Google Scholar 

  14. S. Gao, M. Chen, M. Joshi, A. Shibata and N. Tsuji: J. Mater. Sci., 2014, vol. 49, pp. 6536-6542.

    Article  CAS  Google Scholar 

  15. J.W. Wyrzykowski and M.W. Grabski: Mater. Sci. Eng., 1982, vol. 56, pp. 197-200.

    Article  CAS  Google Scholar 

  16. Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang and N. Tsuji: Scripta Mater., 2018, vol. 142, pp. 88-91.

    Article  CAS  Google Scholar 

  17. D. Terada, M. Inoue, H. Kitahara and N. Tsuji: Mater. Trans., 2008, vol. 49, pp. 41-46.

    Article  CAS  Google Scholar 

  18. Z. Li, L. Fu and A. Shan: Mater. Letters, 2013, vol. 96, pp. 1-4.

    Article  CAS  Google Scholar 

  19. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893-899.

    Article  CAS  Google Scholar 

  20. R. Saha, R. Ueji and N. Tsuji: Scripta Mater., 2013, vol. 68, pp. 813-816.

    Article  CAS  Google Scholar 

  21. X. Huang, N. Tsuji and N. Hansen: Science, 2006, vol. 312, pp. 249-251.

    Article  CAS  Google Scholar 

  22. T. Ohashi, M. Kawamukai and H.M. Zbib: Int. J. Plast., 2007, vol. 23, pp. 897-914.

    Article  CAS  Google Scholar 

  23. Y. Aoyagi, T. Tsuru and T. Shimokawa: Int. J. Plast., 2014, vol. 55, pp. 43-57.

    Article  CAS  Google Scholar 

  24. S. Cheng, J.A. Spencer and W.W. Milligan: Acta Mater., 2003, vol. 51, pp. 4505–4518.

    Article  CAS  Google Scholar 

  25. M. Kato, T. Fujii and S. Onaka: Mater. Trans., 2008, vol. 49, pp. 1278-1283.

    Article  CAS  Google Scholar 

  26. I.A. Ovid’ko and N.V. Skiba: Scripta Mater., 2012, vol. 67, pp. 13–16.

    Article  Google Scholar 

  27. I.A. Ovid’ko, A.G. Sheinerman and R.Z. Valiev: Scripta Mater., 2014, vol. 76, pp. 45-48.

    Article  Google Scholar 

  28. H. Van Swygenhoven, M. Spaczér and A. Caro: Nanostruct. Mater., 1998, vol. 10, pp. 819-828.

    Article  Google Scholar 

  29. H. Van Swygenhoven, M. Spaczér, D. Farkas and A. Caro: Nanostruct. Mater., 1999, vol. 12, pp. 323-326.

    Article  Google Scholar 

  30. K. Kinoshita, T. Shimokawa and T. Kinari: Mater. Trans., 2012, vol. 53, pp. 147-155.

    Article  CAS  Google Scholar 

  31. J.W. Wyrzykowski and M.W. Grabski: Phil. Mag. A, 1986, vol. 53, pp. 505-520.

    Article  CAS  Google Scholar 

  32. P.L. Sun, C.Y. Yu, P.W. Kao and C.P. Chang: Scripta Mater., 2005, vol. 52, pp. 265-269.

    Article  CAS  Google Scholar 

  33. N. Kamikawa, T. Hirochi, and T. Furuhara: Proc. 33rd Risø Int. Symp. Mater. Sci. Nanomet. Status Perspect., Technical University of Denmark, 2012, pp. 257–64.

  34. T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung and E.J. Lavernia: Scripta Mater., 2014, vol. 78-79, pp. 25-28.

    Article  Google Scholar 

  35. V.V. Polyakova, I.P. Semenova, A.V. Polyakov, D.K. Magomedova, Y. Huang and T.G. Langdon: Materials Letters, 2017, vol. 190, pp. 256-259.

    Article  CAS  Google Scholar 

  36. J.R. Gatti and P.P. Bhattacharjee: J. Alloys Comp., 2014, vol. 615, pp. 950–961.

    Article  CAS  Google Scholar 

  37. I. Zuiko and R. Kaibyshev: Mate. Sci. Eng. A, 2017, vol. 702, pp. 53-64.

    Article  CAS  Google Scholar 

  38. T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen and X. Huang: Acta Mater., 2018, vol. 156, pp. 369-378.

    Article  CAS  Google Scholar 

  39. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-583.

    Article  CAS  Google Scholar 

  40. L. Su, C. Lu, H. Li, G. Deng and K. Tieu: Mater. Sci. Eng. A, 2014, vol. 614, pp. 148–155.

    Article  CAS  Google Scholar 

  41. Y.B. Zhang and O.V. Mishin: Mater. Charact., 2017, vol. 129, pp. 323–328.

    Article  CAS  Google Scholar 

  42. N. Kamikawa, N. Tsuji, X. Huang and N. Hansen: Acta Mater., 2006, vol. 54, pp. 3055-3066.

    Article  CAS  Google Scholar 

  43. R.K. Ham: Phil. Mag., 1961, vol. 6, pp. 1183-1184.

    Article  Google Scholar 

  44. N. Kamikawa and N. Tsuji: Mater. Trans., 2016, vol. 57, pp. 1720-1728.

    Article  CAS  Google Scholar 

  45. Y. Ito and Z. Horita: Mater. Sci. Eng. A, 2009, vol. 503, pp. 32–36.

    Article  Google Scholar 

  46. N. Kamikawa and T. Furuhara: J. Mater. Process. Technol., 2013, vol. 213, pp. 1412-1418.

    Article  CAS  Google Scholar 

  47. Y. Ito, K. Edalati and Z. Horita: Mater. Sci. Eng. A, 2017, vol. 679, pp. 428-434.

    Article  CAS  Google Scholar 

  48. Z. Horita, K. Kishikawa, K. Kimura, K. Tatsumi and T.G. Langdon: Mater. Sci. Forum, 2007, vols. 558-559, pp. 1273-1278.

    Article  Google Scholar 

  49. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5-8.

    Article  CAS  Google Scholar 

  50. H.W. Höppel, J. May and M. Göken: Adv. Eng. Mater., 2004, vol. 6, pp. 781-784.

    Article  Google Scholar 

  51. H.-W. Kim, S.-B. Kang, N. Tsuji and Y. Minamino: Acta Mater., 2005, vol. 53, pp. 1737-1749.

    Article  CAS  Google Scholar 

  52. J.E. Bailey and P.B. Hirsch: Phil. Mag., 1960, vol. 5, pp. 485-497.

    Article  CAS  Google Scholar 

  53. N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801-806.

    Article  CAS  Google Scholar 

  54. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827-1836.

    Article  CAS  Google Scholar 

  55. G.W.C. Kaye and T.H. Laby: Tables of Physical and Chemical Constants, 14th ed., Longman, London, 1973, pp. 31.

    Google Scholar 

  56. G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307-324.

    Google Scholar 

  57. W.G. Johnston: J. Appl. Phy., 1962, vol. 33, pp. 2716-2730.

    Article  CAS  Google Scholar 

  58. E.O. Hall: Yield point phenomena in metals and alloys, Plenum Press, New York, 1970.

    Book  Google Scholar 

  59. D.J. Lloyd: Metal Sci., 1980, vol. 14, pp. 193-198.

    Article  CAS  Google Scholar 

  60. M.W. Grabski and R. Korski: Phil. Mag., 1970, vol. 22, pp. 707-715.

    Article  CAS  Google Scholar 

  61. J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047-3067.

    Article  CAS  Google Scholar 

  62. J. Kacher, B.P. Eftink, B. Cui and I.M. Robertson: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 227-243.

    Article  CAS  Google Scholar 

  63. J.C.M. Li: Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 239-247.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported partly by the Grant-in-Aid for Scientific Research on Innovative Area, “Bulk Nanostructured Metals” (Grant No. 22102006) and partly by the Grant-in-Aid for Research Activity Start-up (Grant No. 21860010), through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, which are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kamikawa.

Additional information

Manuscript submitted August 24, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamikawa, N., Hirochi, T. & Furuhara, T. Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum. Metall Mater Trans A 50, 234–248 (2019). https://doi.org/10.1007/s11661-018-5007-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5007-3

Navigation