Skip to main content
Log in

Microstructure-Property Relationships of Novel Ultra-High-Strength Press Hardening Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The industrial significance of microalloyed martensitic steels manufactured via cold rolling, reaustenitization, and quenching has been typically recognized as low. However, it is currently believed that microalloying can improve the in-service properties of ultra-high-strength press hardening steels. In this work, five 34MnB5-based steels were designed to address the role of Ti and V when combined with Cr or Mo. Microstructure-property relationships were analyzed after die quenching and additional bake hardening (BH) heat treatment using advanced methods of microscopy, glow discharge optical emission spectroscopy, quasi-static tensile tests, and three-point bending tests. Results indicate that both Ti and V can provide grain size refinement through the formation of stabile nanosized precipitates. The BH treatment improved postuniform elongation values, indicating a trend of improved ductility. However, the expected improvements in bendability were clearly confirmed only for two V-microalloyed steels with the alloying concepts of 0.3Cr-0.15V-0.03Al-0.02Ti-0.0020B and 0.3Mo-0.15V-0.0060N (without Al-Ti-B additions) (wt pct). Thus, it was discovered that microalloying with V, when combined with either Cr or Mo, provides a promising combination of mechanical properties as far as the austenitization parameters are appropriately controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. K. Mori, P.F. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, and J. Yanagimoto: CIRP Ann.-Manuf. Techn., 2017, vol. 66 (2), pp. 755–77.

    Article  Google Scholar 

  2. T. Gerber, I. Heckelmann, N. Vives Diaz, and F.-J. Lenze: Proc. 4th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Luleå, 2013, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2013, pp. 145–52.

  3. G. Krauss: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 40–57.

    Article  Google Scholar 

  4. M. Naderi: Doctoral Thesis, University of Aachen, Aachen, 2007.

  5. H. Mohrbacher: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 213–20.

  6. A. Tokizawa, K. Yamamoto, Y. Takemoto, and T. Senuma: Proc. 4th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Luleå, 2013, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2013, pp. 473–79.

  7. P. Larour, H. Pauli, T. Kurz, and T. Hebesberger: Proc. Ann. Conf. Int. Deep Drawing Research Group (IDDRG 2010), Graz, 2010.

  8. J. Bian, L. Wang, H. Mohrbacher, H.Z. Lu, and W.J. Wang: Adv. Mater. Res., 2015, vol. 1063, pp. 7–20.

    Google Scholar 

  9. T. Kurz, P. Larour, J. Lackner, T. Steck, and G. Jesner: Proc. Ann. Conf. Int. Deep Drawing Research Group (IDDRG 2016), Linz, 2016, E. Till et al., eds., 2016, pp. 414–27.

  10. D. Fan, H. Kim, and B. De Cooman: Steel Res. Int., 2009, vol. 80 (3), pp. 241–48.

    Google Scholar 

  11. H. Järvinen, M. Honkanen, M. Järvenpää, and P. Peura: J. Mater. Process. Technol., 2018, vol. 252, pp. 90–104.

    Article  Google Scholar 

  12. P. Dietsch, K. Tihay, S. Cobo, S. Sarkar, D. Hasenpouth, and D. Cornette: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 629–38.

  13. J. Bian, H. Lu, W. Wang, and A. Guo: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 600–09.

  14. J. Wang, Y. Liu, Q. Lu, J. Pang, Z. Wang, C.M. Enloe, J.P. Singh, and C.D. Horvath: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., pp. 717–27.

  15. W.S. Choi and B.C. De Cooman: Steel Res. Int., 2014, vol. 85 (5), pp. 824–35.

    Article  Google Scholar 

  16. J. Bian and H. Mohrbacher: Proc. AIST Int. Symp. of New Developments of Advanced High Strength Sheet Steels, CO, p. 251.

  17. K. Hikida, T. Nishibata, H. Kikuchi, T. Suzuki, and N. Nakayama: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, eds., 2015, pp. 127–34.

  18. M. Maikranz-Valentin: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 317–24.

  19. S. Otani, M. Kozuka, T. Murakami, J. Naito, A. Pichler, and T. Kurz: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, eds., 2015, pp. 411–16.

  20. B. Hutchinson, D. Martin, O. Karlsson, F. Lindberg, H. Thoors, R.K.W. Marceau, and A.S. Taylor: Mater. Sci. Technol., 2017, vol. 33 (4), pp. 497–506.

    Article  Google Scholar 

  21. M. Matsumoto, Y. Takemoto, and T. Senuma: Proc. 5th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Toronto, 2015, K. Steinhoff, M. Oldenburg, and P. Prakash, 2015, pp. 55–63.

  22. T. Kishimoto, Y. Takemoto, and T. Senuma: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, eds., 2017, pp. 187–94.

  23. H. Asahi: ISIJ Int., 2002, vol. 42 (10), pp. 1150–55.

    Article  Google Scholar 

  24. F. Han, B. Hwang, D. Suh, Z. Wang, D.L. Lee, and S. Kim: Met. Mater. Int., 2008, vol. 14 (6), p. 667–72.

    Article  Google Scholar 

  25. W.T. Geng, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2001, vol. 63, art. no. 165415.

  26. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54 (5), pp. 1279–88.

    Article  Google Scholar 

  27. T.N. Baker: Ironmak. Steelmak., 2016, vol. 43 (4), pp. 264–307.

    Article  Google Scholar 

  28. D.K. Matlock and J.G. Speer: Mater. Sci. Technol., 2009, vol. 25 (9), pp. 1118–25.

    Article  Google Scholar 

  29. S.-C. Wang and P.-W. Kao: J. Mater. Sci., 1993, vol. 28 (19), pp. 5169–75.

    Article  Google Scholar 

  30. D. Glisic, N. Radovic, A. Koprivica, A. Fadel, and D. Drobnjak: ISIJ Int., 2010, vol. 50, pp. 601–06.

    Article  Google Scholar 

  31. H. Järvinen, M. Isakov, T. Nyyssönen, M. Järvenpää, and P. Peura: Mater. Sci. Eng. A, 2016, vol. 676, pp. 109–20.

    Article  Google Scholar 

  32. O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko: Met. Sci. Heat Treat., 1984, vol. 26 (1), pp. 27–31.

    Article  Google Scholar 

  33. “Steel. Determination of Yield Strength Increase by the Effect of Heat Treatment (Bake-Hardening-Index),” EN 10325:2006, BSI, 2006.

  34. T. Nyyssönen, M. Isakov, P. Peura, and V.-T. Kuokkala: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2587–90.

    Article  Google Scholar 

  35. ImageJ (Image Processing and Analysis in Java), https://imagej.nih.gov/ij/index.html, accessed 24 May 2018.

  36. VDA 238-100 test specification draft: Plate Bending Test for Metallic Materials. Accessed 12 2010.

  37. T. Nishibata and N. Kojima: J. Alloy Compd., 2013, vol. 577 (0), pp. 549–54.

    Article  Google Scholar 

  38. G. Krauss: ISIJ Int., 1995, vol. 35 (4), pp. 349–59.

    Article  Google Scholar 

  39. W.S. Choi, J. Lee, and B.C. De Cooman: Mater. Sci. Eng. A, 2015, vol. 639, pp. 439–47.

    Article  Google Scholar 

  40. R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, and A. Charai: Acta Mater., 1999, vol. 47 (12), pp. 3475–81.

    Article  Google Scholar 

  41. Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong: Mater. Des., 2012, vol. 34, pp. 427–34.

    Article  Google Scholar 

  42. S. Aminorroaya and R. Dippenaar: J. Microsc.-Oxford, 2008, vol. 232, pp. 123–29.

    Article  Google Scholar 

  43. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, pp. 81–211.

    Google Scholar 

  44. R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, Scand. J. Metall., 1999, vol. 28, pp. 186–241.

    Google Scholar 

  45. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, ISIJ Int., 2004, vol. 44 (11), pp. 1945–51.

    Article  Google Scholar 

  46. S. Zajac, T. Siwecki, W.B. Hutchinson, and R. Lagneborg: ISIJ Int., 1998, vol. 38 (10), pp. 1130–39.

    Article  Google Scholar 

  47. S.-I. Tabata, K. Hikida, and K. Kusumi: Proc. 6th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, Atlanta, GA, 2017, M. Oldenburg, P. Prakash, and K. Steinhoff, 2017, pp. 299–307.

  48. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 98, pp. 81–93.

    Article  Google Scholar 

  49. B. Ju, H. Wu, D. Tang, and N. Dang: J. Iron Steel Res. Int., 2016, vol. 23 (5), pp. 495–500.

    Article  Google Scholar 

  50. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Scripta Mater., 2016, vol. 110, pp. 96–100.

    Article  Google Scholar 

  51. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol. 79 (2), pp. 92–97.

    Article  Google Scholar 

  52. M. Saeglitz and G. Krauss: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 377–87.

    Article  Google Scholar 

  53. S.C. Kennett, G. Krauss, and K.O. Findley: Scripta Mater., 2015, vol. 107, pp. 123–26.

    Article  Google Scholar 

  54. A.G. Kostryzhev, A. Al Shahrani, C. Zhu, J.M. Cairney, S.P. Ringer, C.R. Killmore, and E.V. Pereloma: Mater. Sci. Eng. A, 2014, vol. 607A, pp. 226–35.

    Article  Google Scholar 

  55. W.C. Leslie and R. Sober: ASM Trans. Q., 1967, vol. 60 (1), pp. 99–111.

    Google Scholar 

  56. D.H. Sulistiyo, L. Cho, E.J. Seo, and B.C. De Cooman: Mater. Sci. Technol., 2016, pp. 1–14.

  57. A. Saastamoinen, A. Kaijalainen, D. Porter, and P. Suikkanen: Mater. Charact., 2017, vol. 134, pp. 172–81.

    Article  Google Scholar 

  58. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, and D.A. Porter: Mater. Sci. Eng. A, 2016, vol. 654, pp. 151–60.

    Article  Google Scholar 

  59. J. Steninger and A. Melander: Scand. J. Metall., 1982, vol. 11 (2), pp. 55–71.

    Google Scholar 

Download references

Acknowledgments

We thank Johan Lönnqvist and Christer Eggertson (Swerea KIMAB) for carrying out laboratory melts, Jussi Paavola (University of Oulu) for performing laboratory rolling of experimental steels, and Sanna Järn (SSAB Europe Oy) for implementing GDOES analysis. This study was financially supported by the Finnish Funding Agency for Technology and Innovation (Tekes) in the Breakthrough Steels and Applications Program of the Finnish Metals and Engineering Competence Cluster (FIMECC Ltd), which is gratefully acknowledged. The author thanks the Tampere University of Technology (TUT’s Graduate School), Emil Aaltonen Foundation, and Finnish Foundation for Technology Promotion for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Järvinen.

Additional information

Manuscript submitted July 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Järvinen, H., Honkanen, M., Oja, O. et al. Microstructure-Property Relationships of Novel Ultra-High-Strength Press Hardening Steels. Metall Mater Trans A 50, 816–836 (2019). https://doi.org/10.1007/s11661-018-4967-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4967-7

Navigation