Skip to main content
Log in

Effect of Different Initial Structures on the Simulation of Microstructure Evolution During Normal Grain Growth via Phase-Field Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of different initial structures on the simulation of microstructure evolution during normal grain growth was comparatively studied by using a two-dimensional phase-field model. Three methods, standard Voronoi construction, weighted Voronoi construction, and hand drawing, were used to generate the initial structures. For the hand-drawn initial structure, different boundary conditions, including periodic and gradient boundary conditions, were also applied. The phase-field simulation of normal grain growth in the succinonitrile–coumarin152 system was chosen as the benchmark, and compared with the experimental microstructure evolution. The phase-field simulated results generally conformed to Hillert’s theory, Von Neumann–Mullins law, and the experimental results. Different initial structures with similar initial grain size distribution showed similar grain size evolution. The simulation results for the “experimental” initial structure constructed by hand drawing showed best agreement with the experimental results during the early stage of grain growth process. With the increased time, the accuracy of simulation appeared strongly dependent on the grain numbers, and thus the gradient boundary condition is more suitable for long-time grain growth simulation than the periodic boundary condition. Overall, the combination of phase-field simulation and “experimental” initial microstructures allows the study of the grain growth in arbitrary polycrystalline materials, as demonstrated here for comprehensive study of austenite grain growth in two commercial high-strength steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Zhu, R.J. Asaro, P. Krysl, K. Zhang and J.R. Weertman, Acta Mater 2006, vol. 54, pp. 3307-20.

    Article  CAS  Google Scholar 

  2. T.B. Tengen, T. Wejrzanowski, R. Iwankiewicz and K.J. Kurzydlowski, Solid State Phenom 2008, vol. 140, pp. 185-90.

    Article  CAS  Google Scholar 

  3. P. Blikstrin and A.P. Tschiptschin, Materials Research 1999, vol. 2, pp. 133-37.

    Article  Google Scholar 

  4. X.Y. Song, G.Q. Liu and N.J. Gu, Scripta Mater 2000, vol. 43, pp. 355-59.

    Article  Google Scholar 

  5. M.W. Nordbakke, N. Ryum and O. Hunderi, Acta Mater 2002, vol. 50, pp. 3661-70.

    Article  CAS  Google Scholar 

  6. K. Marthinsen, O. Hunderi and N. Ryum, Acta Mater 1996, vol. 44, pp. 1681-89.

    Article  CAS  Google Scholar 

  7. F. Wakai, N. Enomoto and H. Ogawa, Acta Mater 2000, vol. 48, pp. 1297-311.

    Article  CAS  Google Scholar 

  8. H.J. Frost and C.V. Thompson, Curr Opin Solid St M 1996, vol. 1, pp. 361-68.

    Article  CAS  Google Scholar 

  9. W. Fayad, C.V. Thompson and H.J. Frost, Scripta Mater 1999, vol. 40, pp. 1199-204.

    Article  CAS  Google Scholar 

  10. D. Weygand, Y. Bréchet, J. Lépinoux and W. Gust, Philos Mag B 1999, vol. 79, pp. 703-16.

    Article  CAS  Google Scholar 

  11. Y. Liu, T. Baudin and R. Penelle, Scripta Mater 1996, vol. 34, pp. 1679-83.

    Article  CAS  Google Scholar 

  12. S. Raghavan and S.S. Sahay, Mater Sci Eng, A 2007, vol. 445-446, pp. 203-09.

    Article  Google Scholar 

  13. C.E. Krill III and L.Q. Chen, Acta Mater 2002, vol. 50, pp. 3059-75.

    Article  Google Scholar 

  14. S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park: Phys. Rev. E, 2006, vol. 74, art. no. 061605.

  15. R. Darvishi Kamachali and I. Steinbach, Acta Mater 2012, vol. 60, pp. 2719-28.

    Article  Google Scholar 

  16. Z.R. Luo, C.J. Lu and Y.J. Gao, Guangxi Sci. 2016, vol. 23, pp. 432-36.

    Google Scholar 

  17. V. Yadav, L. Vanherpe and N. Moelans, Comput Mater Sci 2016, vol. 125, pp. 297-308.

    Article  CAS  Google Scholar 

  18. K. Chang, L.Q. Chen, C.E.K. Iii and N. Moelans, Comput Mater Sci 2017, vol. 127, pp. 67-77.

    Article  CAS  Google Scholar 

  19. E. Miyoshi, T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, and T. Aoki: NPJ Comput. Mater., 2017, vol. 3, art. no. 25.

  20. V. Yadav and N. Moelans, Scripta Mater 2018, vol. 142, pp. 148-52.

    Article  CAS  Google Scholar 

  21. W.E. Benson and J.A. Wert, Acta Mater 1998, vol. 46, pp. 5323-33.

    Article  CAS  Google Scholar 

  22. R. Heilbronner, J Struct Geol 2000, vol. 22, pp. 969-81.

    Article  Google Scholar 

  23. I. Steinbach: Modell. Simul. Mater. Sci. Eng., 2009, vol. 17, art. no. 073001.

  24. N. Warnken, D. Ma, A. Drevermann, R.C. Reed, S.G. Fries and I. Steinbach, Acta Mater 2009, vol. 57, pp. 5862-75.

    Article  CAS  Google Scholar 

  25. N. Ta, L.J. Zhang, Y. Tang, W.M. Chen and Y. Du, Surf Coat Technol 2015, vol. 261, pp. 364-74.

    Article  CAS  Google Scholar 

  26. M. Wei, Y. Tang, L.J. Zhang, W.H. Sun and Y. Du, Metall Mater Trans A 2015, vol. 46, pp. 3182-91.

    Article  Google Scholar 

  27. K. Wang, M. Wei, L.J. Zhang and Y. Du, Metall Mater Trans A 2016, vol. 47, pp. 1510-16.

    Article  Google Scholar 

  28. K. Wang, M. Wei, and L.J. Zhang: Materials, 2016, vol. 9, art. no. 584.

    Article  Google Scholar 

  29. J.E. Burke and D. Turnbull, Prog Met Phys 1952, vol. 3, pp. 220-92.

    Article  CAS  Google Scholar 

  30. W.W. Mullins, J Appl Phys 1956, vol. 27, p. 900-04.

    Article  Google Scholar 

  31. J. Von Neumann, American Society for Metals, Cleveland 1952, pp. 108–10.

  32. M. Hillert, Acta Mater 1965, vol. 13, p. 227-38.

    Article  CAS  Google Scholar 

  33. MICRESS: The MICRostructure Evolution Simulation Software. http://www.micress.de. Accessed 27 May 2018.

  34. I. Steinbach and F. Pezzolla, Physica D 1999, vol. 134, pp. 385-93.

    Article  Google Scholar 

  35. K. Lee. PhD Dissertation. Maryland: University of Maryland College Park, 2004.

  36. K. Lee and W. Losert, Acta Mater 2005, vol. 53, pp. 3503-10.

    Article  CAS  Google Scholar 

  37. N. Maraşlı, K. Keşlıoğlu and B. Arslan, J Cryst Growth 2003, vol. 247, pp. 613-22.

    Article  Google Scholar 

  38. Y. He, H. Ding, L. Liu and K. Shin, Mater Sci Eng, A 2006, vol. 429, pp. 236-46.

    Article  Google Scholar 

  39. ImageJ: Image Processing and Analysis in Java. https://imagej.nih.gov/ij. Accessed 27 May 2018.

  40. T. Wejrzanowski and K.J. Kurzydlowski, Solid State Phenom 2005, vol. 101-102, pp. 315-18.

    Article  Google Scholar 

  41. P.R. Rios and K. Lucke, Scripta Mater 2001, vol. 44, p. 2471.

    Article  CAS  Google Scholar 

  42. G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li and X.X. Li, J Iron Steel Res Int 2014, vol. 21, pp. 757-64.

    Article  CAS  Google Scholar 

  43. S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo and T.Q. Liu, Mater Sci Eng, A 2011, vol. 528, pp. 4967-72.

    Article  CAS  Google Scholar 

  44. H.S. Zurob, C.R. Hutchinson, Y. Brechet and G. Purdy, Acta Mater 2002, vol. 50, pp. 3077-94.

    Article  Google Scholar 

  45. V.E. Fradkov, Philos Mag Lett 1988, vol. 58, pp. 271-75.

    Article  Google Scholar 

  46. E.D. Hondros, Proc R Soc London, Ser A 1965, vol. 286, pp. 479-98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Key Research and Development Program of China (Grant No. 2016YFB0301101) and the National Natural Science Foundation of China (Grant No. 51474239) is acknowledged. Lijun Zhang acknowledges financial support from the project supported by State Key Laboratory of Powder Metallurgy Foundation, Central South University, Changsha, P. R. China. The authors wish to thank Dr. Z. Lu from School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, P.R. China for discussions on the effect of the boundary condition on the grain growth simulation during the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Additional information

Manuscript submitted June 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wei, M., Zhang, L. et al. Effect of Different Initial Structures on the Simulation of Microstructure Evolution During Normal Grain Growth via Phase-Field Modeling. Metall Mater Trans A 49, 6442–6456 (2018). https://doi.org/10.1007/s11661-018-4908-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4908-5

Navigation