Skip to main content
Log in

A Comparison of the Inertia Friction Welding Behavior of Similar and Dissimilar Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The inertia friction welding behavior of similar (LSHR to LSHR or Mar-M247 to Mar-M247) and dissimilar (LSHR to Mar-M247) alloy pairs was determined. The relationships between the IFW process parameters and welding response, such as the kinetics and efficiency of the transformation of the mechanical energy of the flywheel into heat of joining samples, weld duration, kinetics of flash formation, and bond quality were identified. Conditions resulting in sound welding were determined. It was found that the mechanistic behavior of each of the alloys during dissimilar welding can be approximated by the behavior of the respective alloy during similar welding. By contrast, the microstructure, microhardness and the thickness of the heat affected zone depended on the type of the alloy pair used during IFW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

IFW:

Inertia friction welding

I :

Flywheel moment of inertia

E o :

Initial flywheel kinetic energy

E :

Instant flywheel kinetic energy

ω o :

Initial flywheel angular velocity

ω :

Instant flywheel angular velocity

P :

Axial compression force

r :

Radius of cylindrical samples

A = πr 2 :

Joining surface area

σ = P/A :

Applied compression stress

t :

Time

t w :

Total welding time

M :

Total torque

M S :

Sample torque, i.e. torque caused by friction forces at the weld interface

M B :

Machine torque

\( E_{\text{S}} = \mathop \smallint \limits_{0}^{{t_{\text{w}} }} M_{\text{S}} \omega {\text{d}}t \) :

Sample energy (energy consumed at the weld interface)

η = E S/E o :

Cumulative efficiency of the IFW process

η inst = M S/M :

Instantaneous IFW process efficiency

τ = 1.5M/(Ar):

Friction-induced shear stress

L-L.X:

A LSHR to LSHR weldment (L-L) from a welding trial X, where X = 1, 2, 3, or 4

M-M.X:

A Mar-M247 to Mar-M247 weldment (M-M) from a welding trial X, where X = 1, 2, 3, or 4

L-M.X:

A LSHR to Mar-M247 weldment (L-M) from a welding trial X, where X = 1, 2, 3, or 4

Δl :

Sample length loss during IFW

Δl w :

Total sample length loss during IFW

L :

The distance from the weld interface

T :

Temperature

T 0 :

Temperature at the weld interface

T max0 :

Maximum temperature at the weld interface

T 1mm :

Temperature on a cylindrical surface of a joining sample at L = 1 mm

T max1mm :

Maximum registered temperature on a cylindrical surface of a joining sample at L = 1 mm

Hv:

Vickers microhardness

HAZ:

Heat affected zone

ΔHAZ :

Thickness of heat affected zone

YS:

Tensile yield stress

UTS:

Ultimate tensile strength

El:

Total tensile elongation to fracture

E :

Young’s modulus

SE:

Secondary electrons

BSE:

Backscatter electrons

REFERENCES

  1. F.J. Wallace, D.E. Spindler, and J.P. Thome: in Metals Handbook: Vol. 6: Welding, Brazing and Soldering, American Society for Metals, 1989.

  2. M.M. Attallah, and M. Preuss: in Welding and Joining of Aerospace Materials, M.C. Chaturvedi, ed., Woodhead Publishing: Oxford, 2012.

  3. A. Chamanfar, M. Jahazi and J. Cormier: Metall. Mater. Trans. A 2015, vol. 46, pp. 1639-1669.

    Article  Google Scholar 

  4. O.N. Senkov, D.W. Mahaffey, S.L. Semiatin and C. Woodward: Metall. Mater. Trans A 2014, vol. 45, pp. 5545-5561.

    Article  Google Scholar 

  5. O. N. Senkov, D. W. Mahaffey, S. L. Semiatin and C. Woodward: J. Mater. Eng. Perform. 2015, vol. 24, pp. 1173-1184.

    Article  CAS  Google Scholar 

  6. Jian Luo, Longfei Li, Yaling Dong and Xiaoling Xu: International Journal of Advanced Manufacturing Technology 2014, vol. 70, pp. 1673-1681.

    Article  Google Scholar 

  7. O.N. Senkov, D. W. Mahaffey and S. L. Semiatin: Metall. Mater. Trans. A 2016, vol. 47A, pp. 6121-6137.

    Article  Google Scholar 

  8. D. W. Mahaffey, O. N. Senkov, R. Shivpuri and S. L. Semiatin: Metall. Mater. Trans. A 2016, vol. 47, pp. 3981-4000.

    Article  Google Scholar 

  9. Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter: Metall. Mater. Trans. A, vol. 38A, pp. 1608–20, 2007.

    Article  CAS  Google Scholar 

  10. M. Preuss, P. J. Withers and G. J. Baxter: Mater. Sci. Eng. A 2006, vol. 437, pp. 38-45.

    Article  Google Scholar 

  11. F. Daus, H. Y. Li, G. Baxter, S. Bray and P. Bowen: Materials Science and Technology 2007, vol. 23, pp. 1424-1432.

    Article  CAS  Google Scholar 

  12. Z. W. Huang, H. Y. Li, G. Baxter, S. Bray and P. Bowen: Journal of Materials Processing Technology 2011, vol. 211, pp. 1927-1936.

    Article  CAS  Google Scholar 

  13. Z. W. Huang, H. Y. Li, G. Baxter, S. Bray and P. Bowen: Advanced Materials Research 2011, vol. 278, pp. 440-5.

    Article  CAS  Google Scholar 

  14. O.N. Senkov, D.W. Mahaffey, D.J. Tung, W. Zhang and S.L. Semiatin: Metall. Mater. Trans A 2017, vol. 48, pp. 3328-3342.

    Article  Google Scholar 

  15. O.N. Senkov, D.W. Mahaffey and S.L. Semiatin: J. Mater. Process. Technol. 2017, vol. 250, pp. 156-168.

    Article  CAS  Google Scholar 

  16. S.L. Semiatin, K.E. MacClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang and T.P. Cabb: Metall. Mater. Trans. A 2013, vol. 44, pp. 2778-2798.

    Article  Google Scholar 

  17. M. Kaufman: in Fifth International Symposium on Superalloys, TMS, Warrendale, PA, 1984, pp 43–52.

  18. S.L. Semiatin, D.W. Mahaffey, D.J. Tung, W. Zhang and O.N. Senkov: Metall. Mater. Trans A 2017, vol. 48A, pp. 1864-1879.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Inertia-friction-welding experiments were conducted at EWI, Inc., Columbus, Ohio with the technical assistance of David Workman (EWI) and Mark Ruddell (UDRI). Valuable discussions with Andrew Rosenberger (AFRL), William Musinski (AFRL), Daniel Tung (OSU), Rajiv Shivpuri (OSU), and Wei Zhang (OSU) are much appreciated. O.N. Senkov acknowledges financial support through the Air Force on-site Contract FA8650-15-D-5230 managed by UES, Inc., Dayton, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Senkov.

Additional information

Manuscript submitted May 3, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senkov, O.N., Mahaffey, D.W. & Semiatin, S.L. A Comparison of the Inertia Friction Welding Behavior of Similar and Dissimilar Ni-Based Superalloys. Metall Mater Trans A 49, 5428–5444 (2018). https://doi.org/10.1007/s11661-018-4853-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4853-3

Navigation