Skip to main content
Log in

Effect of Nb Addition on Dendrite Growth and Equiaxed Grain Ratio of Fe-20 Pct Cr High-Purity Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

ABSTRACT

The acquisition of a high equiaxed zone ratio (EZR) is crucial for ferritic stainless steel (FSS). The main method of achieving this is to use effective particles to promote heterogeneous nucleation. In this study, an increased EZR was obtained owing to dendritic growth kinetics influenced by Nb addition. The EZR increased from 12 to 44 pct when 0.7 wt pct Nb was added to the FSS. The mechanism of increase of the EZR was analyzed by modified dendritic growth kinetics using the Kurz–Giovanola–Trivedi model coupled with thermodynamic data from ThermoCalc. The dendritic growth kinetics for Fe-20 pct Cr and Fe-20 pct Cr-0.7 pct Nb can be expressed as \( V = 2.258 \times 10^{ - 5} \cdot \Delta T^{3.617} \) and \( V = 5.755 \times 10^{ - 7} \cdot \Delta T^{3.248} \), respectively, which means that undercooling (ΔT) of Fe-20 pct Cr-0.7 pct Nb was larger than that of Fe-20 pct Cr under the same solidification velocity (V). The undercooling enlarged at the dendrite tip then provided favorable nucleation conditions for FSS and increased the EZR. The as-cast structure, simulated by the cellular automaton–finite element model combined with modified dendritic growth kinetics, compared well with an actual ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. C. Kim, J. J. Kim, J. Y. Choi, J. H. Choi and S. K. Kim: La Metall. Ital., 2009, vol. 101, pp. 43-48.

    Google Scholar 

  2. K. Kimura and A. Takahashi: Nippon Steel Tech. Rep., 2010, vol., pp. 51–55.

  3. H. Miyamoto, T. Xiao, T. Uenoya and M. Hatano: ISIJ Int., 2010, vol. 50, pp. 1653-1659.

    Article  CAS  Google Scholar 

  4. C. S. Costa Viana, C. A. L. Pinto, F. S. Candido and R. G. Matheus: Mater. Sci. Technol., 2006, vol. 22, pp. 293-300.

    Article  Google Scholar 

  5. J. Mola, I. Jung, J. Park, D. Chae and B.C. De Cooman: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 228-244.

    Article  Google Scholar 

  6. H. Shin, J. An, S. Park and D. Lee: Acta Mater., 2003, vol. 51, pp. 4693-4706.

    Article  CAS  Google Scholar 

  7. N. Hirata, H. Ota, Y. Kato, T. Ujiro and O. Furukimi: Tetsu-to-Hagane, 2003, vol. 89, pp. 855-862.

    Article  CAS  Google Scholar 

  8. K. Kawahara: J. Jpn. I. Met., 1974, vol. 38, pp. 440-446.

    Article  CAS  Google Scholar 

  9. Y Y. Itoh, S. Takao, T. Okajima and K. Tashiro: Tetsu-to-Hagane, 1980, vol. 66, pp. 710-716.

    Article  CAS  Google Scholar 

  10. Y. Itoh, T. Okajima, H. Maede and K. Tashiro: Tetsu-to-Hagane, 1981, vol. 67, pp. 946-953.

    Article  CAS  Google Scholar 

  11. H. Takeuchi, H. Mori, Y. Ikehara, T. Komano and T. Yanai: Tetsu-to-Hagane, 1980, vol. 66, pp. 638-646.

    Article  CAS  Google Scholar 

  12. J. D. Defilippi and H. Chao: Metall. Trans., 1971, vol. 2, pp. 3209-3216.

    Article  CAS  Google Scholar 

  13. S. Fukumoto, K. Kimura and A. Takahashi: Tetsu-to-Hagane, 2012, vol. 98, pp. 351-357.

    Article  CAS  Google Scholar 

  14. K. Kimura, S. Fukumoto, G. Shigesato and A. Takahashi: ISIJ Int., 2013, vol. 53, pp. 2167-2175.

    Article  CAS  Google Scholar 

  15. J. A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247-269.

    Article  CAS  Google Scholar 

  16. M. Gäumann, R. Trivedi and W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226, pp. 763-769.

    Article  Google Scholar 

  17. W. Kurz, C. Bezençon and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 185-191.

    Article  CAS  Google Scholar 

  18. B. L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-1995.

    Article  CAS  Google Scholar 

  19. X. Shi, G. Cheng and P. Zhao: J. Univ. Sci. Technol. B., 2010, vol. 32, pp. 1277-1281.

    CAS  Google Scholar 

  20. H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa: Tetsu-to-Hagane, 2001, vol. 87, pp. 707-712.

    Article  CAS  Google Scholar 

  21. J. H. Park: CALPHAD, 2011, vol. 35, pp. 455-462.

    Article  CAS  Google Scholar 

  22. N. Fujita, K. Ohmura and A. Yamamoto: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272-281.

    Article  Google Scholar 

  23. G. M. Sim, J. C. Ahn, S. C. Hong, K. J. Lee and K. S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159-165.

    Article  Google Scholar 

  24. H. Yan, H. Bi, X. Li and Z. Xu: Mater. Charact., 2009, vol. 60, pp. 204-209.

    Article  CAS  Google Scholar 

  25. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki and I. Hiroshige: Scripta Mater., 1996, vol. 35, pp. 705-710.

    Article  CAS  Google Scholar 

  26. L. Wang, C. Song, F. Sun, L. Li and Q. Zhai: Mater. Design, 2009, vol. 30, pp. 49-56.

    Article  CAS  Google Scholar 

  27. E. Ishimaru, A. Takahashi and N. Ono: Nippon Steel Tech. Rep., 2010, vol., pp. 26-32.

  28. K. Omura, S. Kunioka and M. Furukawa: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 9-19.

    Google Scholar 

  29. T. MATSUHASHI, A. TAKAHASHI and H. KAJIMURA: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 20-25.

    Google Scholar 

  30. T. SHIBATA: Trans. Iron and Steel Inst. Japan, 1983, vol. 23, pp. 785-788.

    Article  CAS  Google Scholar 

  31. H. Abo and Y. Hosoi: Corros. Eng., 1979, vol. 28, pp. 584-594.

    Article  CAS  Google Scholar 

  32. Y. Shan, X. Luo, X. Hu and S. Liu: J Mater. Sci. Technol., 2011, vol. 27, pp. 352-358.

    Article  CAS  Google Scholar 

  33. P. R. Scheller, S. Lachmann, C. Klinkenberg, K. Hulka and A. Weiss: ISIJ Int., 2006, vol. 46, pp. 1865-1870.

    Article  CAS  Google Scholar 

  34. Y. Kang, W. M. Mao, Y. J. Chen, J. Jing and M. Cheng: Mater. Sci. Eng. A, 2016, vol. 677, pp. 453-464.

    Article  CAS  Google Scholar 

  35. W. Kurz, B. Giovanola and R. Trivedi: Acta Mater., 1986, vol. 34, pp. 823-830.

    Article  CAS  Google Scholar 

  36. P. Lan, H. Sun, Y. Li and J. Zhang: J. Univ. Sci. Technol. B., 2014, vol.36, pp. 315-322.

    CAS  Google Scholar 

  37. W. W. Mullins and R. F. Sekerka: J. appl. Phys., 1964, vol. 35, pp. 444-451.

    Article  Google Scholar 

  38. W. Kurz and D. J. Fisher: Acta metall., 1981, vol. 29, pp. 11-20.

    Article  CAS  Google Scholar 

  39. J. Lipton, M. E. Glicksman and W. Kurz: Metall. Trans. A, 1987, vol. 18, pp. 341-345.

    Article  CAS  Google Scholar 

  40. W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Switzerland (1998).

    Google Scholar 

  41. D. M. Stefanescu: ISIJ Int., 1995, vol. 35, pp. 637-650.

    Article  CAS  Google Scholar 

  42. M. Rappaz and C. A. Gandin: Acta metall. mater., 1993, vol. 41, pp. 345-360.

    Article  CAS  Google Scholar 

  43. P. Thévoz, J. L. Desbiolles and M. Rappaz: Metall. Trans. A, 1989, vol. 20, pp. 311-322.

    Article  Google Scholar 

  44. B. Sundman, B. Jansson and J. Andersson: CALPHAD, 1985, vol. 9, pp. 153-190.

    Article  CAS  Google Scholar 

  45. J. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  CAS  Google Scholar 

  46. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93-124.

    Article  CAS  Google Scholar 

  47. N. Mangelinck-Noël, J.E. Spinelli, C.-A. Gandin, G. Reinhart, H. Nguyen-Thi and B. Billia: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 27, pp. 12090.

    Article  Google Scholar 

  48. C. A. Gandin, J. L. Desbiolles, M. Rappaz and P. Thevoz: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3153-3165.

    Article  CAS  Google Scholar 

  49. Z. Hou, F. Jiang and G. Cheng: ISIJ Int., 2012, vol. 52, pp. 1301-1309.

    Article  CAS  Google Scholar 

  50. R. Pang, F. Ming, G. Zhang and C. Li: Acta Metall. Sin., 2013, vol.49, pp. 1234-1242.

    Article  CAS  Google Scholar 

  51. L. Bai, B. Wang, H. Zhong, J. Ni, Q. Zhai and J. Zhang: Metals, 2016, vol. 6, pp. 53-64.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This study was supported by the National Natural Science Foundation of China (Project Grant No. 51374020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Additional information

Manuscript Submitted April 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Li, S. & Cheng, G. Effect of Nb Addition on Dendrite Growth and Equiaxed Grain Ratio of Fe-20 Pct Cr High-Purity Ferritic Stainless Steel. Metall Mater Trans A 49, 5445–5457 (2018). https://doi.org/10.1007/s11661-018-4838-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4838-2

Navigation