Skip to main content
Log in

HAZ Liquation Cracking Mechanism of IN-738LC Superalloy Prepared by Laser Solid Forming

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The heat-affected zone (HAZ) liquation cracking mechanism of nickel-based superalloys with high (Al+Ti) content during the laser solid forming (LSF) process was investigated via laser remelting of an as-deposited IN-738LC superalloy. Microstructural HAZ analysis revealed that cracks consistently propagated from the HAZ to the remelting zone along the grain boundary (GB). The formation of a liquid film during GB liquation was mainly owing to localized melting of the semicontinuous γ-γ′ eutectic distributed along the GB. The solute segregation behavior of the IN-738LC alloy during LSF was analyzed using the Giovanola–Kurz model and Scheil models, revealing that a significant enrichment of γ-γ′ eutectic-forming elements in the residual liquid at the final stage of solidification (solid fraction ~ 0.87) in the molten pool was the main cause of semicontinuous γ-γ′ eutectic formation along the GB. Further, a B enrichment at the GB was identified in LSF-fabricated IN-738LC, which promoted cracking by lowering the GB liquation temperature and promoting wetting of the GB by the liquid film. Unlike the phenomenon observed in the welding of cast IN-738LC, the coherence between the γ′ phases and the γ matrix in LSF-fabricated IN-738LC can suppress the occurrence of constitutional liquation of the γ′ phase. To understand the interaction between the thermal stress and the liquid film in the LSF process, thermal stress as a cracking driving force was also estimated based on the measurement of the residual stress from the substrate to the remelting zone of the IN-738LC deposit by the Vickers micro-indentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. O. A. Ojo, N. L. Richards, M. C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37, pp. 421–33.

    Article  Google Scholar 

  2. M. F. Chiang, C. Chen: Mater. Chem. Phys., 2009, vol. 114, pp. 415–19.

    Article  Google Scholar 

  3. X. Lin, H. O. Yang, J. Chen, W. D. Huang: Acta Metall. Sin., 2006, vol. 42, pp. 361–368.

    Google Scholar 

  4. P. Guo, X. Lin, J. Li, Y. Zhang, M. Song, W. Huang: Corros. Sci., 2017, vol. 132, pp. 79-89.

    Article  Google Scholar 

  5. J. Chen, L. Xue: Materials Science and Engineering: A, 2010, vol. 527, pp. 7318-7328.

    Article  Google Scholar 

  6. L. Rickenbacher, T. Etter, S. Hövel, K. Wegener: Rapid Prototyping J., 2013, vol. 19, pp. 282-290.

    Article  Google Scholar 

  7. X. Zhao, X. Lin, J. Chen, L. Xue, W. Huang: Materials Science and Engineering: A, 2009, vol. 504, pp. 129-134.

    Article  Google Scholar 

  8. O. A. Ojo, M. C. Chaturvedi: Materials Science and Engineering: A, 2005, vol. 403, pp. 77-86.

    Article  Google Scholar 

  9. O. A. Ojo, Y. L. Wang, M. C. Chaturvedi: Materials Science and Engineering: A, 2008, vol. 476, pp. 217-223.

    Article  Google Scholar 

  10. M. Montazeri, F. M. Ghaini: Mater. Charact., 2012, vol. 67, pp. 65-73.

    Article  Google Scholar 

  11. Y. L. Hu, X. Lin, K. Song, X. Y. Jiang, H. O. Yang, W. D. Huang: Optics & Laser Technology, 2016, vol. 86, pp. 1-7.

    Article  Google Scholar 

  12. O. T. Ola, O. A. Ojo, M. C. Chaturvedi: Philos. Mag., 2014, vol. 94, pp. 3295-3316.

    Article  Google Scholar 

  13. J. J. Pepe, W. F. Savage: Welding Journal, Research Supplement, 1967, vol. 46, pp. 411.

    Google Scholar 

  14. B. Radhakrishnan: Interface Science, 1993, vol. 1, pp. 175-182.

    Article  Google Scholar 

  15. A. Devaux, L. Naze, R. Molins, A. Pineau, A. Organista, J. Y. Guedou, J. F. Uginet, P. Heritier: Materials Science and Engineering: A, 2008, vol. 486, pp. 117-122.

    Article  Google Scholar 

  16. Y. Ji, Y. Lou, M. Qu, J. D. Rowatt, F. Zhang, T. W. Simpson, L. Q. Chen: Metallurgical & Materials Transactions A, 2016, vol. 47, pp. 3235-3247.

    Article  Google Scholar 

  17. G. C. Weatherly, R. B. Nicholson: Philos. Mag., 1968, vol. 17, pp. 801-831.

    Article  Google Scholar 

  18. M. Lachowicz, W. Dudziński, M. Podrez-Radziszewska: Mater. Charact., 2008, vol. 59, pp. 560-566.

    Article  Google Scholar 

  19. G. Bi, C. Sun, H. Chen, F. L. Ng, C. C. K. Ma: Materials & Design, 2014, vol. 60, pp. 401-408.

    Article  Google Scholar 

  20. X. Zhao, J. Chen, F. He, H. Tan, W. Huang: Rare Metal Mat. Eng., 2007, vol. 36, pp. 216-220.

    Google Scholar 

  21. J. Yang, F. Li, Z. Wang, X. Zeng: J. Mater. Process. Tech., 2015, vol. 225, pp. 229-239.

    Article  Google Scholar 

  22. J. Xu, X. Lin, P. Guo, Y. Hu, X. Wen, L. Xue, J. Liu, W. Huang: Materials Science and Engineering: A, 2017, vol. 691, pp. 71-80.

    Article  Google Scholar 

  23. S. Suresh, A. E. Giannakopoulos: Acta Mater., 1998, vol. 46, pp. 5755-5767.

    Article  Google Scholar 

  24. C. Chen, C. X. Pan, F. U. Qiang: Materials for Mechanical Engineering, 2007, vol. 31, pp. 8-11.

    Google Scholar 

  25. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang: Optics & Laser Technology, 2011, vol. 43, pp. 208-213.

    Article  Google Scholar 

  26. X. Wang, D. Deng, H. Yi, H. Xu, S. Yang, H. Zhang: Optics & Laser Technology, 2017, vol. 92, pp. 5-14.

    Article  Google Scholar 

  27. S. Carlsson, P. L. Larsson: Acta Mater., 2001, vol. 49, pp. 2179-2191.

    Article  Google Scholar 

  28. A. Chamanfar, M. Jahazi, A. Bonakdar, E. Morin, A. Firoozrai: Materials Science and Engineering: A, 2015, vol. 642, pp. 230-240.

    Article  Google Scholar 

  29. A. Bonakdar, M. Molavi-Zarandi, A. Chamanfar, M. Jahazi, A. Firoozrai, E. Morin: Journal of Manufacturing Processes, 2017, vol. 26, pp. 339-354.

    Article  Google Scholar 

  30. N. Saunders, M. Fahrmann, C. J. Small: in: K.A. Green, T.M. Pollock, R.D. Kissinger (Eds.), Superalloys 2000, TMS, Warrendale, 2000, pp. 803-811.

    Chapter  Google Scholar 

  31. Y. Liang, X. Cheng, H. Wang: Acta Mater., 2016, vol. 118, pp. 17-27.

    Article  Google Scholar 

  32. Y. Danis, C. Arvieu, E. Lacoste, T. Larrouy, J. Quenisset: Materials & Design, 2010, vol. 31, pp. 402-416.

    Article  Google Scholar 

  33. A. Basak, S. Das: J. Alloy. Compd., 2017, vol. 705, pp. 806-816.

    Article  Google Scholar 

  34. R. K. Sidhu, O. A. Ojo, M. C. Chaturvedi: Metallurgical and Materials Transactions A, 2007, vol. 38, pp. 858-870.

    Article  Google Scholar 

  35. S. M. Seo, J. H. Lee, Y. S. Yoo, C. Y. Jo, H. Miyahara, K. Ogi: Metallurgical and Materials Transactions A, 2011, vol. 42, pp. 3150-3159.

    Article  Google Scholar 

  36. B. Giovanola, W. Kurz: Metallurgical Transactions A, 1990, vol. 21, pp. 260-263.

    Article  Google Scholar 

  37. W. Kurz, B. Giovanola, R. Trivedi: Acta Metallurgica, 1986, vol. 34, pp. 823-830.

    Article  Google Scholar 

  38. W. Kurz, D. J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Switzerland, 1992, pp. 106-107.

    Google Scholar 

  39. G. Ma, D. Wu, D. Guo: Metallurgical and Materials Transactions A, 2011, vol. 42A, pp. 3853-3857.

    Article  Google Scholar 

  40. G. H. Gessinger, M. J. Bomford: Powder Metallurgy of Superalloys, Butterworths Monographs in Materials, Butterworth and Co., London, 1984, pp. 51-76.

    Google Scholar 

  41. J. Guo: Materials science and engineering for superalloys, Science Press, Beijing, China, 2008, pp. 89-102.

    Google Scholar 

  42. N. El-Bagoury, M. Waly, A. Nofal: Materials Science and Engineering: A, 2008, vol. 487, pp. 152-161.

    Article  Google Scholar 

  43. A. T. Egbewande, H. R. Zhang, R. K. Sidhu, O. A. Ojo: Metallurgical and Materials Transactions A, 2009, vol. 40, pp. 2694-2704.

    Article  Google Scholar 

  44. H. B. Aaron, G. R. Kotler: Metallurgical Transactions, 1971, vol. 2, pp. 393-408.

    Article  Google Scholar 

  45. O. A. Ojo, N. L. Richards, M. C. Chaturvedi: Scripta Mater., 2004, vol. 50, pp. 641-646.

    Article  Google Scholar 

  46. A. Czyrska-Filemonowicz: Papers of commission of metallurgy and foundry, Polish Academy of Sciences, 1989, vol. 32, pp. 32-57.

    Google Scholar 

  47. S. Iwamura, Y. Miura: Acta Mater., 2004, vol. 52, pp. 591-600.

    Article  Google Scholar 

  48. P. K. Rastogi, A. J. Ardell: Acta Metallurgica, 1971, vol. 19, pp. 321-330.

    Article  Google Scholar 

  49. O. T. Ola, O. A. Ojo, M. C. Chaturvedi: Materials Science & Technology, 2013, vol. 29, pp. 426-438.

    Article  Google Scholar 

  50. O. T. Ola, O. A. Ojo, M. C. Chaturvedi: Mater. Sci. Tech.-Lond., 2013, vol. 30, pp. 1461-1469.

    Article  Google Scholar 

  51. A. J. Ardell: Pergamon Press, 1963, vol. 16A, pp. 2131-2165.

    Google Scholar 

  52. A. D. Romig, J. C. Lippold, M. J. Cieslak: Metallurgical Transactions A, 1988, vol. 19, pp. 35-50.

    Article  Google Scholar 

  53. O. A. Ojo, N. L. Richards, M. C. Chaturvedi: Scripta Mater., 2004, vol. 51, pp. 683-688.

    Article  Google Scholar 

  54. S. M. Seo, I. S. Kim, J. H. Lee, C. Y. Jo, H. Miyahara, K. Ogi: Metallurgical and Materials Transactions A, 2007, vol. 38, pp. 883-893.

    Article  Google Scholar 

  55. X. Huang, M. C. Chaturvedi, N. L. Richards, J. Jackman: Acta Mater., 1997, vol. 45, pp. 3095-3107.

    Article  Google Scholar 

  56. R. T. Holt, W. Wallace: Metallurgical Reviews, 1976, vol. 21, pp. 1-24.

    Article  Google Scholar 

  57. L. O. Osoba, R. K. Sidhu, O. A. Ojo: Materials Science & Technology, 2013, vol. 27, pp. 897-902.

    Article  Google Scholar 

  58. E. Chauvet, P. Kontis, E. A. Jägle, B. Gault, D. Raabe, C. Tassin, J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin: Acta Mater., 2018, vol. 142, pp. 82-94.

    Article  Google Scholar 

  59. J. N. Dupont, J. C. Lippold, S. D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, in: Wiley (Ed.), 2011, pp. 225–43.

  60. B. J. Keene: Metallurgical Reviews, 1993, vol. 38, pp. 157-192.

    Article  Google Scholar 

  61. J. Zhang, R. F. Singer: Metallurgical & Materials Transactions A, 2004, vol. 35, pp. 1337-1342.

    Article  Google Scholar 

  62. W. Lin, J. C. Lippold, W. A. I. Baeslack: Weld. J., 1993, vol. 72, pp. 135-153.

    Google Scholar 

  63. R. J. Moat, A. J. Pinkerton, L. Li, P. J. Withers, M. Preuss: Materials Science and Engineering: A, 2011, vol. 528, pp. 2288-2298.

    Article  Google Scholar 

  64. Y. C. Tsui, T. W. Clyne: Thin Solid Films, 1997, vol. 306, pp. 23-33.

    Article  Google Scholar 

  65. J. Cao, F. Liu, X. Lin, C. Huang, J. Chen, W. Huang: Optics & Laser Technology, 2013, vol. 45, pp. 228-235.

    Article  Google Scholar 

  66. P. Zhang, S. X. Li, Z. F. Zhang: Materials Science and Engineering: A, 2011, vol. 529, pp. 62-73.

    Article  Google Scholar 

  67. M. Alimardani, E. Toyserkani, J. P. Huissoon, C. P. Paul: Opt. Laser. Eng., 2009, vol. 47, pp. 1160-1168.

    Article  Google Scholar 

  68. Z. Feng, T. Zacharia, S. A. David: Weld. J., 1997, vol. 76, pp. S470-S483.

    Google Scholar 

  69. S. S. Babu, S. A. David, J. W. Park, J. M. Vitek: Science & Technology of Welding & Joining, 2004, vol. 9, pp. 1-12.

    Article  Google Scholar 

  70. K. Zhao, Y. H. Ma, L. H. Lou, Z. Q. Hu: J. Mater. Res., 2005, vol. 20, pp. 2314-2321.

    Article  Google Scholar 

  71. A. T. Egbewande, R. A. Buckson, O. A. Ojo: Mater. Charact., 2010, vol. 61, pp. 569-574.

    Article  Google Scholar 

  72. S. Paddea, J. A. Francis, A. M. Paradowska, P. J. Bouchard, I. A. Shibli: Materials Science and Engineering: A, 2012, vol. 534, pp. 663-672.

    Article  Google Scholar 

  73. J. X. Fang, S. Y. Dong, Y. J. Wang, B. S. Xu, Z. H. Zhang, D. Xia, P. He: Materials & Design, 2015, vol. 87, pp. 807-814.

    Article  Google Scholar 

  74. N. J. Harrison, I. Todd, K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59-68.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support by National Natural Science Foundation of China (Grant Nos. 51323008 and 51501154), National Key Research and Development Programme of China (Grant Nos. 2016YFB1100104 and 2016YFB1100600), Key Scientific and Technological Innovation Team Project in Shaanxi Province (No. 2014KCT-14), Key Research and Development Program of Shaanxi Province (No. 2016KTZDCY02-02), and Natural Science Foundation of Shaanxi Province (No. 2017JM5052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Lin, Haiou Yang or Hongbiao Dong.

Additional information

Manuscript submitted March 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lin, X., Zhao, Y. et al. HAZ Liquation Cracking Mechanism of IN-738LC Superalloy Prepared by Laser Solid Forming. Metall Mater Trans A 49, 5118–5136 (2018). https://doi.org/10.1007/s11661-018-4826-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4826-6

Navigation