Skip to main content
Log in

Evolution Behaviors and Mechanisms of Internal Crack Healing in Steels at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution behaviors and mechanisms of internal crack healing in three different kinds of steels, including 20 high-quality carbon structural steel, 30Cr2Ni4MoV steel, and SUS304 stainless steel, at elevated temperatures were systematically investigated. The morphology of the crack healing zone was observed using an optical microscope (OM) and a scanning electron microscope (SEM). The grain boundary character distribution evolution of the crack healing zone was investigated using electron backscatter diffraction (EBSD). The results show that the existence of two crack healing mechanisms is confirmed in all three experimental steels. Crack healing is controlled by atomic diffusion at lower temperatures 1173 K (≤ 900 °C) and depends mainly on recrystallization and grain growth mechanisms at higher temperatures 1273 K (≥ 1000 °C). Atomic diffusion provides materials for recrystallization and grain growth in the crack healing zone. Recrystallization leads to rapid crack healing, and grain growth facilitates microstructural homogenization and elimination of the crack healing zone. The process of internal crack healing can be divided into five stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.S. Xin, Q.X. Ma, D.D. Guo, and W.Q. Li: Mater. Sci. Eng. A, 2017, vol. 682, pp. 433–40.

    Article  Google Scholar 

  2. X.G. Zheng, Y.N. Shi, and K. Lu: Mater. Sci. Eng. A, 2013, vol. 561, pp. 52–59.

    Article  Google Scholar 

  3. K.K. Alaneme and M.O. Bodunrin: Appl. Mater. Today, 2017, vol. 6, pp. 9–15.

    Article  Google Scholar 

  4. J.T. Han, G. Zhao, and Q.X. Cao: Acta Metall. Sinica, 1996, vol. 32, pp. 723–29.

    Google Scholar 

  5. Y.X. Zhong, C.L. Yuan, and Q.X. Ma: J. Tsinghua Univ. 2002, 42, 512–15.

    Google Scholar 

  6. H.L. Zhang and J. Sun: Mater. Sci. Eng. A, 2004, vol. 382, pp. 171–80.

    Article  Google Scholar 

  7. H.L. Zhang, P.Z. Huang, J. Sun, and H. Gao: Appl. Phys. Lett., 2004, vol. 85, pp. 1143–45.

    Article  Google Scholar 

  8. Y.Z. Zhou, J.D. Guo, M. Gao, and G.H. He: Mater. Lett., 2004, vol. 58, pp. 1732–36.

    Article  Google Scholar 

  9. T. Yu, D.W. Deng, G. Wang, and H.C. Zhang: J. Clean. Prod., 2016, vol. 113, pp. 989–94.

    Article  Google Scholar 

  10. K.W. Gao, L.J. Qiao, and W.Y. Chu: Scripta Mater., 2001, vol. 44, pp. 1055–59.

    Article  Google Scholar 

  11. M. Song, K. Du, S.P. Wen, Z.R. Nie, and H.Q. Ye: Acta Mater., 2014, vol. 69, pp. 236–45.

    Article  Google Scholar 

  12. H. Gao, Z. Ai, H. Yu, and X. Liu: Plos. One, 2014, vol. 9, pp. 1–6.

    Google Scholar 

  13. H. Song and Z.J. Wang: Mater. Sci. Eng. A, 2008, vol. 490, pp. 1–6.

    Article  Google Scholar 

  14. A.I. Petrov and M.V. Razuvaeva: Phys. Solid State, 2005, vol. 47, pp. 907–12.

    Article  Google Scholar 

  15. G.Q. Xu and M.J. Demkowicz: Phys. Rev. Lett., 2013, vol. 111, pp. 1–4.

    Google Scholar 

  16. J. Li, Q.H. Fang, B. Liu, Y. Liu, Y.W. Liu, and P.H. Wen: Acta Mater., 2015, vol. 95, pp. 291–301.

    Article  Google Scholar 

  17. A. Hosoi, T. Nagahama, and Y. Ju: Mater. Sci. Eng. A, 2012, vol. 533, pp. 38–42.

    Article  Google Scholar 

  18. H.L. Yu, X.H. Liu, and X.W. Li: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1001–09.

    Article  Google Scholar 

  19. R.S. Xin, Q.X. Ma, and W.Q. Li: Mater. Sci. Eng. A, 2016, vol. 662, pp. 65–71.

    Article  Google Scholar 

  20. Y.J. Zhang and J.T. Han: Met. Sci. Heat Treat., 2012, vol. 58, pp. 526–28.

    Article  Google Scholar 

  21. R.S. Xin, J.B. Luo, and Q.X. Ma: Metals, 2017, vol. 7, pp. 1–12.

    Article  Google Scholar 

  22. Z.L. Zhao: International Conference on Mechanic Automation and Control Engineering, IEEE, Wuhan, 2010.

Download references

Acknowledgment

The authors gratefully acknowledge the financial support from the National Natural Foundation of China (Grant No. 51775298).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Shan Xin or Qing-Xian Ma.

Additional information

Manuscript submitted February 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, RS., Kang, J., Ma, QX. et al. Evolution Behaviors and Mechanisms of Internal Crack Healing in Steels at Elevated Temperatures. Metall Mater Trans A 49, 4906–4917 (2018). https://doi.org/10.1007/s11661-018-4814-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4814-x

Navigation