Skip to main content
Log in

Atomistic Simulations of Compression Tests on γ-Precipitate Containing Ni3Al Nanocubes

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of \(\gamma \) precipitates on the deformation behavior of \(\gamma '\) Ni\(_{3}\)Al nanocubes with {100} side surfaces is investigated by molecular dynamics simulations of uniaxial compression tests at 300 K. The plastic deformation of the nanocubes is caused by the nucleation of Shockley partial dislocations near the cube corners followed by the formation of pseudo-twins. While the dominant deformation mechanisms and the flow stress are not affected by the presence of \(\gamma \) precipitates, the precipitates reduce the yield stress by up to 10 pct and determine the location of dislocation nucleation. These findings can be rationalized by accounting for the misfit stresses caused by the presence of the \(\gamma \) precipitates. Within the simulated ranges, the results are independent of cube size, rounding of the cube or precipitate corners, surface roughness, and strain rate. The observed precipitate softening in the dislocation-nucleation-controlled deformation of \(\gamma '\) Ni\(_{3}\)Al nanocubes is in stark contrast to the strengthening effect caused by the presence of a \(\gamma \) phase in the \(\gamma '\) precipitates in the microstructure of typical Ni- and Co-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. C. Reed, The Superalloys, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. T. M. Pollock and S. Tin, J. Propul. Power, 2006, vol. 22, 2, pp. 361–374.

    Article  Google Scholar 

  3. A. Prakash, J. Guenole, J. Wang, J. Muller, E. Spiecker, M. J. Mills, I. Povstugar, P. Choi, D. Raabe and E. Bitzek, Acta Mater., 2015, vol. 92, pp. 33–45.

    Article  Google Scholar 

  4. R. K. Ham, R. H. Cook and G. R. Purdy, Met. Sci. J., 1972, vol. 6, 1, pp. 73–77.

    Article  Google Scholar 

  5. J. Radavich and W. Couts, Trans. ASM, 1961, vol. 54, pp. 591–597.

    Google Scholar 

  6. R. K. Ham, R. H. Cook, G. R. Purdy and G. Willoughby, Met. Sci. J., 1972, vol. 6, 1, pp. 205–210.

    Article  Google Scholar 

  7. H. F. Merrick, Metall. Trans., 1973, vol. 4, 3, pp. 885–887.

    Article  Google Scholar 

  8. L. R. Cornwell and G. R. Purdy, Metall. Trans., 1974, vol. 5, 3, pp. 780–781.

    Article  Google Scholar 

  9. F. Vogel, N. Wanderka, Z. Balogh, M. Ibrahim, P. Stender, G. Schmitz and J. Banhart, Nat. Commun., 2013, vol. 4, pp. 1–7.

    Google Scholar 

  10. V. Yardley, I. Povstugar, P. P. Choi, D. Raabe, A. B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E. P. George and G. Eggeler, Advanced Engineering Materials, 2016, vol. 18, 9, pp. 1556–1567.

    Article  Google Scholar 

  11. W. Tian, T. Sano and M. Nemoto, Scr. Metall., 1986, vol. 20, 6, pp. 933–936.

    Article  Google Scholar 

  12. Y. Ma and A. J. Ardell, Acta Mater., 2007, vol. 55, 13, pp. 4419–4427.

    Article  Google Scholar 

  13. T. Pretorius, D. Baither and E. Nembach, Acta Mater., 2001, vol. 49, 11, pp. 1981–1985.

    Article  Google Scholar 

  14. A. Takahashi, M. Kawanabe and M. Kikuchi, Adv. Mater. Res., 2008, vol. 33-37, pp. 815–820.

    Article  Google Scholar 

  15. A. Takahashi, M. Kawanabe, N. Kikai, G. Ronbunshu, A. Hen, Trans. Jpn. Soc. Mech. Eng. A, 2009, vol. 75(753), pp. 595–603.

    Article  Google Scholar 

  16. A. Takahashi, M. Kawanabe and N. M. Ghoniem, Philos. Mag., 2010, vol. 90, 27-28, pp. 3767–3786.

    Article  Google Scholar 

  17. A. Takahashi and Y. Terada, Key Eng. Mater., 2011, vol. 462-463, pp. 425–430.

    Article  Google Scholar 

  18. D. Mukherji, R. Müller, R. Gilles, P. Strunz, J. Rösler and G. Kostorz, Nanotechnology, 2004, vol. 15, 5, pp. 648–657.

    Article  Google Scholar 

  19. J. Schloesser, J. Rösler and D. Mukherji, Int. J. Mater. Res., 2011, vol. 102, 5, pp. 532–537.

    Article  Google Scholar 

  20. R. Maaß, L. Meza, B. Gan, S. Tin and J. Greer, Small, 2012, vol. 8, 12, pp. 1869–1875.

    Article  Google Scholar 

  21. A. Landefeld, W. M. Mook, J. Rösler and J. Michler, ISRN Nanomater., 2012, vol. 2012, pp. 1–4.

    Article  Google Scholar 

  22. J. Amodeo, C. Begau and E. Bitzek, Mater. Res. Lett., 2014, vol. 2, 3, pp. 140–145.

    Article  Google Scholar 

  23. K. Shreiber and D. Mordehai, Model. Numer. Simul. Mater. Sci., 2015, vol. 23, 8, p. 085004.

    Article  Google Scholar 

  24. J. Amodeo and K. Lizoul, Mater. Des., 2017, vol. 135, pp. 223–231.

    Article  Google Scholar 

  25. K.K. Sankaran and R.S. Mishra: Metallurgy and Design of Alloys with Hierarchical Microstructures. Elsevier, Amsterdam (2017).

    Google Scholar 

  26. IMD: The ITAP Molecular Dynamics Program. http://imd.itap.physik.uni-stuttgart.de, 1996. Accessed 22 Jan 2018.

  27. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Phys. Rev. Lett., 2006, vol. 97, 17, p. 170201.

    Article  Google Scholar 

  28. A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Mö Nig and O. Kraft, Acta Mater., 2012, vol. 60, pp. 3985–3993.

    Article  Google Scholar 

  29. A. Prakash, M. Hummel, S. Schmauder and E. Bitzek, MethodsX, 2015, vol. 3, pp. 219–230.

    Article  Google Scholar 

  30. K. J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Phys. Rev. B, 2003, vol. 67, 10, p. 104105.

    Article  Google Scholar 

  31. W.G. Hoover, Phys. Rev. A, 1985, vol. 31, 3, pp. 1695–1697.

    Article  Google Scholar 

  32. J. P. Du, C. Y. Wang and T. Yu, Model. Numer. Simul. Mater. Sci., 2013, vol. 21, 1, p. 015007.

    Article  Google Scholar 

  33. D. Faken and H. Jónsson, Comput. Mater. Sci., 1994, vol. 2, 2, pp. 279–286.

    Article  Google Scholar 

  34. G. J. Ackland and A. P. Jones, Phys. Rev. B, 2006, vol. 73, 5, p. 054104.

    Article  Google Scholar 

  35. C. Begau: AtomViewer. http://homepage.ruhr-uni-bochum.de/Christoph.Begau, 2014. Accessed 22 Jan 2018.

  36. C. Hartley and Y. Mishin, Acta Mater., 2005, vol. 53, 5, pp. 1313–1321.

    Article  Google Scholar 

  37. C. Begau, A. Hartmaier, E. George and G. Pharr, Acta Mater., 2011, vol. 59, 3, pp. 934–942.

    Article  Google Scholar 

  38. C. Begau, J. Hua and A. Hartmaier, J. Mech. Phys. Solids, 2012, vol. 60, 4, pp. 711–722.

    Article  Google Scholar 

  39. J.P. Hirth and J. Lothe: Theory of Dislocations. Wiley, New York, 1982.

    Google Scholar 

  40. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press: Oxford, UK, 1996.

    Google Scholar 

  41. A. Prakash and E. Bitzek, Materials, 2017, vol. 10, 1, p. 88.

    Article  Google Scholar 

  42. A. Stukowski, Model. Numer. Simul. , 2010, vol. 18, 1, p. 015012.

    Article  Google Scholar 

  43. J. R. Greer and J. T. M. De Hosson, Prog. Mater. Sci., 2011, vol. 56, 6, pp. 654–724.

    Article  Google Scholar 

  44. B. Gan, H. Murakami, R. Maaß, L. Meza, J. Greer, T. Ohmura, and S. Tin: Superalloys 2012, Proceedings of 12th International Symposium, Wiley, Hoboken, 2012, pp. 83–91.

  45. A. Frøseth, H. Van Swygenhoven and P. Derlet, Acta Mater., 2004, vol. 52, 8, pp. 2259–2268.

    Article  Google Scholar 

  46. H. Van Swygenhoven, P. M. Derlet and A. G. Frøseth, Nat. Mater., 2004, vol. 3, 6, pp. 399–403.

    Article  Google Scholar 

  47. H. Van Swygenhoven, P. Derlet and A. Frøseth, Acta Mater., 2006, vol. 54, 7, pp. 1975–1983.

    Article  Google Scholar 

  48. Z. Jin, S. Dunham, H. Gleiter, H. Hahn and P. Gumbsch, Scr. Mater., 2011, vol. 64, 7, pp. 605–608.

    Article  Google Scholar 

  49. M. Kolbe, Mater. Sci. Eng., A, 2001, vol. 319-321, pp. 383–387.

    Article  Google Scholar 

  50. L. Kovarik, R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang and M. Mills, Prog. Mater. Sci., 2009, vol. 54, 6, pp. 839–873.

    Article  Google Scholar 

  51. W. Gerberich, E. Tadmor, J. Kysar, J. Zimmerman, A. Minor, I. Szlufarska, J. Amodeo, B. Devincre, E. Hintsala and R. Ballarini, J. Vac. Sci. Technol., 2017, vol. 35, 6.

    Article  Google Scholar 

  52. L. E. Murr, Interfacial phenomena in metals and alloys, Addison-Wesley, MA, 1975.

    Google Scholar 

  53. H. Karnthaler, E. Mühlbacher and C. Rentenberger, Acta Mater., 1996, vol. 44, 2, pp. 547–560.

    Article  Google Scholar 

  54. A. J. Ardell and M. Pozuelo, Intermetallics, 2017, vol. 88, pp. 81–90.

    Article  Google Scholar 

  55. R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang and M. Mills, Acta Mater., 2011, vol. 59, 19, pp. 7325–7339.

    Article  Google Scholar 

  56. N. Zhou, C. Shen, M.J. Mills, J. Li, Y. Wang: Acta Mater., 2011, vol. 59(9), pp. 3484–3497.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through projects C3 (atomistic simulations) of SFB/Transregio 103 (Single Crystal Superalloys), and within the Cluster of Excellence “Engineering of Advanced Materials” (Project EXC 315) (Bridge Funding). FW thanks the Deutscher Akademischer Austauschdienst (DAAD) for its support through the Research Internships in Science and Engineering (RISE) scholarship program. Computing resources were provided by the Regionales RechenZentrum Erlangen (RRZE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Houllé.

Additional information

Manuscript submitted March 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houllé, F., Walsh, F., Prakash, A. et al. Atomistic Simulations of Compression Tests on γ-Precipitate Containing Ni3Al Nanocubes. Metall Mater Trans A 49, 4158–4166 (2018). https://doi.org/10.1007/s11661-018-4706-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4706-0

Navigation