Skip to main content

Advertisement

Log in

A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ′ phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caron P, Khan T. Mater. Sci. Eng. 1983;61(2):173-84.

    Article  Google Scholar 

  2. Reed RC. The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  3. Pollock TM, Argon AS. Acta Metall. Mater. 1994;42(6):1859-74.

    Article  Google Scholar 

  4. Grose D, Ansell G. Metallurgical & Materials Transactions A. 1981;12:1631-45.

    Article  Google Scholar 

  5. Nathal MV, Mackay RA, Garlick RG. Mater. Sci. Eng.. 1985;75(1):195-205.

    Article  Google Scholar 

  6. Belle D, Basti P. Philos. Mag. B 1991;64(2):143-52.

    Article  Google Scholar 

  7. Müller L, Link T, Feller-Kniepmeier M. Scripta Metall. Mater. 1992;26(8):1297-302.

    Article  Google Scholar 

  8. Diologent F, Caron P, d’Almeida T, Jacques A, Bastie P. Nucl. Instrum. Methods Phys. Res. B 2003;200:346-51.

    Article  Google Scholar 

  9. Jacques A, Bastie P. Philos. Mag. 2003;83(26):3005-27.

    Article  Google Scholar 

  10. Jacques A, Diologent F, Bastie P. Mater. Sci. Eng. A 2004;387–389:944-9.

    Article  Google Scholar 

  11. Dirand L, Cormier J, Jacques A, Chateau-Cornu J-P, Schenk T, Ferry O, et al. Mater. Charact. 2013;77:32-46.

    Article  Google Scholar 

  12. le Graverend J-B, Dirand L, Jacques A, Cormier J, Ferry O, Schenk T, et al. Metall. Mater. Trans. A 2012;43(11):3946-51.

    Article  Google Scholar 

  13. le Graverend J-B, Jacques A, Cormier J, Ferry O, Schenk T, Mendez J. Acta Mater. 2015;84(0):65-79.

    Article  Google Scholar 

  14. le Graverend J-B, Cormier J, Gallerneau F, Kruch S, Mendez J. Mater Design. 2014;56(0):990-7.

    Article  Google Scholar 

  15. Serin K, Göbenli G, Eggeler G. Materials Science & Engineering A. 2004;387-389:133-7.

    Article  Google Scholar 

  16. Cormier J, Milhet X, Mendez J. Acta Mater. 2007;55(18):6250-9.

    Article  Google Scholar 

  17. Cormier J, Milhet X, Mendez J. Mater. Sci. Eng. A 2008;483-484:594-7.

    Article  Google Scholar 

  18. Raffaitin A, Monceau D, Crabos F, Andrieu E. Scripta Mater. 2007;56:277-80.

    Article  Google Scholar 

  19. Viguier B, Touratier F, Andrieu E. Philos. Mag. 2011;91(35):4427-46.

    Article  Google Scholar 

  20. le Graverend J-B, Cormier J, Gallerneau F, Villechaise P, Kruch S, Mendez J. Int. J. Plast. 2014;59(0):55-83.

    Article  Google Scholar 

  21. Méric L, Poubanne P, Cailletaud G. J. Eng. Mater. Technol. 1991;113:162-70.

    Article  Google Scholar 

  22. Asaro RJ. Adv. App. Mech. 1983;23:1-115.

    Article  Google Scholar 

  23. Hutchinson JW. Proc. Royal Soc. London A 1970;319(1537):247-72.

    Article  Google Scholar 

  24. Kocks UF. Metall. Mater. Trans. 1970;1(5):1121-43.

    Article  Google Scholar 

  25. Cormier J, Cailletaud G. Mater. Sci. Eng. A 2010;527(23):6300-12.

    Article  Google Scholar 

  26. Ghighi J, Cormier J, Ostoja-Kuczynski E, Mendez J, Cailletaud G, Azzouz F. Technishe Mechanik. 2012;32(2-5):205-20.

    Google Scholar 

  27. le Graverend J.-B. Int. J. Dam. Mech. 2018.

  28. le Graverend J-B, Cormier J, Kruch S, Gallerneau F, Mendez J. Metall. Mater. Trans. A 2012;43(11):3988-97.

    Article  Google Scholar 

  29. Aifantis EC. J. Eng. Mater. Technol. 1984;106(4):326-30.

    Article  Google Scholar 

  30. Fribourg G, Bréchet Y, Deschamps A, Simar A. Acta Mater. 2011;59(9):3621-35.

    Article  Google Scholar 

  31. Moosbrugger JC, McDowell DL. J. Mech. Phys. Solids. 1990;38(5):627-56.

    Article  Google Scholar 

  32. Hayhurst DR. J. Mech. Phys. Solids. 1972;20:381-90.

    Article  Google Scholar 

  33. Lesne PM, Savalle S. La Recherche Aerospatiale. 1987(2):33-47.

    Google Scholar 

  34. Jacques A, Diologent F, Caron P, Bastie P. Mater. Sci. Eng. A 2008;483–484:568-71.

    Article  Google Scholar 

  35. Arnoux M: PhD dissertation, Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (France); 2009.

  36. le Graverend J.-B: PhD dissertation, Ecole Nationale Superieure de Mecanique d’Aerotechnique (France); 2013. ISAE-ENSMA/ONERA (France); 2013.

  37. Cormier J, Milhet X, Champion J-L, Mendez J. Adv. Eng. Mater. 2008;10(1-2):56-61.

    Article  Google Scholar 

Download references

Acknowledgment

The simulations were performed using the computing resources from Laboratory for Molecular Simulation (LMS) and High Performance Research Computing (HPRC) at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. le Graverend.

Additional information

Manuscript submitted March 9, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

le Graverend, JB. A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys. Metall Mater Trans A 49, 4126–4133 (2018). https://doi.org/10.1007/s11661-018-4681-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4681-5

Navigation