Skip to main content

Advertisement

Log in

A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn intermetallic joints, formed by the transient liquid phase (TLP) soldering process with and without the assistance of ultrasonic waves (USWs), were compared. After the application of USWs in the TLP soldering process, Cu-Sn intermetallic compounds (IMCs) exhibited a novel noninterfacial growth pattern in the molten solder interlayer. The resulting Cu6Sn5 and Cu3Sn joints consisted of refined equiaxed IMC grains with average sizes of 3 and 2.3 µm, respectively. The Cu6Sn5 grains in the ultrasonically soldered intermetallic joints demonstrated uniform mechanical properties with elastic modulus and hardness values of 123.0 and 5.98 GPa, respectively, while those of Cu3Sn grains were 133.9 and 5.08 GPa, respectively. The shear strengths of ultrasonically soldered Cu6Sn5 and Cu3Sn joints were measured to be 60 and 65 MPa, respectively, higher than that for reflow-soldered intermetallic joints. Ultrasonically soldered Cu6Sn5 and Cu3Sn joints both exhibited a combination of transgranular and intergranular fractures during shear testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.P. Carson, Y.C. Kim, and I.S. Yoon: Proc. IEEE, 2009, vol. 97, pp. 31-42.

    Article  Google Scholar 

  2. H.Y. Hsiao, C.M. Liu, H.W. Lin, T.C. Liu, C.L. Lu, Y.S. Huang, C. Chen, and K. Tu: Science, 2012, vol. 336, pp. 1007-1010.

    Article  Google Scholar 

  3. Y.J. Chang, C.T. Ko, and K.N. Chen: IEEE Electron. Device Lett., 2013, vol. 34, pp. 102-104.

    Article  Google Scholar 

  4. Y. Lv, M. Chen, M. Cai, and S. Liu: Semicond. Sci. Tech., 2014, vol. 29, pp. 25003-25009.

    Article  Google Scholar 

  5. W. Zhang and W. Ruythooren: J. Electron. Mater., 2008, vol. 37, pp. 1095-1101.

    Article  Google Scholar 

  6. J.F. Li, P.A. Agyakwa, and C.M. Johnson: Acta Mater., 2010, vol. 58, pp. 3429-3443.

    Article  Google Scholar 

  7. N.S. Bosco and F.W. Zok: Acta Mater., 2004, vol. 52, pp. 2965-2972.

    Article  Google Scholar 

  8. G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305-5323.

    Article  Google Scholar 

  9. B. Liu, Y. Tian, J. Feng, and C. Wang: J. Mater. Sci., 2016, vol. 52, pp. 1-12.

    Article  Google Scholar 

  10. B. Liu, Y. Tian, C. Wang, R. An, and C. Wang: Intermetallics, 2017, vol. 80, pp. 26-32.

    Article  Google Scholar 

  11. B. Liu, Y. Tian, C. Wang, R. An, and Y. Liu: J. Alloys Compd., 2016, vol. 687, pp. 667-673.

    Article  Google Scholar 

  12. J.F. Li, P.A. Agyakwa, and C.M. Johnson: Acta Mater., 2011, vol. 59, pp. 1198-1211.

    Article  Google Scholar 

  13. M. Li, Z. Li, Y. Xiao, and C. Wang: Appl. Phys. Lett., 2013, vol. 102, pp. 094104.

    Article  Google Scholar 

  14. Z.L. Li, H.J. Dong, X.G. Song, H.Y. Zhao, J.C. Feng, J.H. Liu, H. Tian, and S.J. Wang: Ultrason. Sonochem., 2017, vol. 36, pp. 420-426.

    Article  Google Scholar 

  15. H. Ji, Y. Qiao, and M. Li: Scr. Mater., 2015, vol. 110, pp. 19-23.

    Article  Google Scholar 

  16. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A.Venkatesh, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3899-3918.

    Article  Google Scholar 

  17. R. Zhang, Y. Tian, C. Hang, B. Liu, and C. Wang: Mater. Lett., 2013, vol. 110, pp. 137-140.

    Article  Google Scholar 

  18. M. Virot, T. Chave, S.I. Nikitenko, D.G. Shchukin, T. Zemb, and H. Mohwald: J. Phys. Chem. C, 1974, vol. 114, pp. 13083-13091.

    Article  Google Scholar 

  19. K.S. Suslick, D.A. Hammerton, and R.E. Cline: J. Am. Chem. Soc., 1986, vol. 89, 5641-5642.

    Article  Google Scholar 

  20. A. Karimi and J.L. Martin: Int. Mater. Rev., 1985, vol. 31, pp. 219-224.

    Google Scholar 

  21. T. Hyeon, K. Kolbeck, W. Mcnamara, and M. Mdleleni: Philos. Trans. R. Soc. B, 1999, vol. 357, pp. 335.

    Article  Google Scholar 

  22. Z. Li, M. Li, Y. Xiao, and C. Wang: Ultrason. Sonochem., 2014, vol. 21, pp. 924-929.

    Article  Google Scholar 

  23. X. Chen, J. Yan, F. Gao, J. Wei, Z. Xu, and G. Fan: Ultrason. Sonochem., 2013, vol. 20, pp. 144-154.

    Article  Google Scholar 

  24. R.K. Chinnam, C. Fauteux, J. Neuenschwander, and J. Janczak-Rusch: Acta Mater., 2011, vol. 59, pp. 1474-1481.

    Article  Google Scholar 

  25. C. Hang, Y. Tian, and R. Zhang: J. Mater. Sci: Mater. Electron., 2013, vol. 24, pp. 3905-3913.

    Google Scholar 

  26. S.F. Choudhury and L. Ladani: J. Electron. Mater., 2014, vol. 43, pp. 996-1004.

    Article  Google Scholar 

  27. P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, and R.S. Chen: Mater. Sci. Eng. A, 2008, vol. 485, pp. 305-310.

    Article  Google Scholar 

  28. D. Mu, H. Huang, and K. Nogita: Mater. Lett., 2012, vol. 86, pp. 46-49.

    Article  Google Scholar 

  29. D. Mu, H. Huang, S.D. Mcdonald, J. Read, and K. Nogita: Mater. Sci. Eng. A, 2013, vol. 566, pp. 126-133.

    Article  Google Scholar 

  30. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman: Acta Mater., 2004, vol. 52, pp. 4291–303.

    Article  Google Scholar 

  31. C. Lee, P. Wang, and J. Kim: 57th Electron. Compo. Technol. Conf. (ECTC 2007), 2007, pp. 648–52.

  32. N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801-806.

    Article  Google Scholar 

  33. N. Hansen: Mater. Sci. Eng. A, 2005, vol. 409, pp. 39-45.

    Article  Google Scholar 

  34. K. Chu, Y. Sohn, and C. Moon: Scr. Mater., 2015, vol. 109, pp. 113-117.

    Article  Google Scholar 

  35. C. Yang, F. Le, and S. W. Ricky Lee: Microelectron. Reliab., 2016, vol. 62, pp. 130-140.

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Shandong Provincial Natural Science Foundation of China (ZR2016EEQ12), the Researching Innovation Fund of Harbin Institute of Technology (HIT. NSRIF. 2016091), the National Natural Science Foundation of China (Grant Nos. 51405099 and U1537206), the Shanghai Aerospace Innovation Fund (Grant No. SAST 2015045), and the National Science and Technology Major Project (No. 2014ZX04001131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. L. Li or X. G. Song.

Additional information

Manuscript submitted December 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H.Y., Liu, J.H., Li, Z.L. et al. A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves. Metall Mater Trans A 49, 2739–2749 (2018). https://doi.org/10.1007/s11661-018-4664-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4664-6

Navigation