Skip to main content
Log in

Analysis of Flow Behavior of an Nb-Ti Microalloyed Steel During Hot Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot flow behavior of an Nb-Ti microalloyed steel is investigated through hot compression test at various strain rates and temperatures. By the combination of dynamic recovery (DRV) and dynamic recrystallization (DRX) models, a phenomenological constitutive model is developed to derive the flow stress. The predefined activation energy of Q = 270 kJ/mol and the exponent of n = 5 are successfully set to derive critical stress at the onset of DRX and saturation stress of DRV as functions of the Zener–Hollomon parameter by the classical hyperbolic sine equation. The remaining parameters of the constitutive model are determined by fitting them to the experiments. Through substitution of a normalized strain in the DRV model and considering the interconnections between dependent parameters, a new model is developed. It is shown that, despite its fewer parameters, this model is in good agreement with the experiments. Accurate analyses of flow data along with microstructural analyses indicate that the dissolution of NbC precipitates and its consequent solid solution strengthening and retardation of DRX are responsible for the distinguished behaviors in the two temperature ranges between T < 1100 °C and T ≥ 1100 °C. Nevertheless, it is shown that a single constitutive equation can still be employed for the present steel in the whole tested temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tamura I, Sekine H, Tanaka T (1988) Thermomechanical Processing of High-Strength Low-Alloy Steels. 1st ed., Butterworth-Heinemann, Oxford pp. 1-15.

    Book  Google Scholar 

  2. D.K. Matlock, G. Krauss, and J.G. Speer: Mater. Sci. Forum, 2005, vol. 500-501, pp. 87-96. https://doi.org/10.4028/www.scientific.net/msf.500-501.87.

    Article  Google Scholar 

  3. C.A. Hernandez, S.F. Medina, and J. Ruiz: Acta Mater., 1996, vol. 44(1), pp. 155-63. https://doi.org/10.1016/1359-6454(95)00153-4.

    Article  Google Scholar 

  4. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera: Mater. Sci. Eng. A, 2015, vol. 636, 196-202. https://doi.org/10.1016/j.msea.2015.03.104.

    Article  Google Scholar 

  5. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Oxford, Elsevier, 2004, pp. 415-50.

    Book  Google Scholar 

  6. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh: Acta Mater., 2011, vol. 59(16), pp. 6441-48. https://doi.org/10.1016/j.actamat.2011.07.008.

    Article  Google Scholar 

  7. X. Li, L. Duan, J. Li, and X. Wu: Mater. Design, 2015, vol. 66, pp. 309-20. https://doi.org/10.1016/j.matdes.2014.10.076.

    Article  Google Scholar 

  8. H. Zou and J.S. Kirkaldy: Metall. Trans. A, 1992, vol. 23(2), pp. 651-57. https://doi.org/10.1007/bf02801182.

    Google Scholar 

  9. S.-H. Cho, K.-B. Kang, and J.J. Jonas: ISIJ Int., 2001, vol. 41(1), pp. 63-69. https://doi.org/10.2355/isijinternational.41.63.

    Article  Google Scholar 

  10. W.F. Hosford and R.M. Caddell: Metal Forming (Mechanics and Metallurgy), 4th ed., Cambridge University Press, New York, NY, 1993, pp. 92-93.

    Google Scholar 

  11. E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, M. El-Wahabi, and J.M. Cabrera: Mater. Sci. Eng. A, 2008, vol. 480(1-2), pp. 49-55. https://doi.org/10.1016/j.msea.2007.06.067.

    Article  Google Scholar 

  12. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, and R. Li: Mater. Design, 2016, vol. 90, pp. 804-14. https://doi.org/10.1016/j.matdes.2015.11.036.

    Article  Google Scholar 

  13. L.X. Kong, P.D. Hodgson, and B. Wang: J. Mater. Proc. Technol., 1999, vol. 89-90, pp. 44-50. https://doi.org/10.1016/s0924-0136(99)00015-1.

    Article  Google Scholar 

  14. H. Mirzadeh and A. Najafizadeh: Mater. Design, 2010, vol. 31(10): 4577-83. https://doi.org/10.1016/j.matdes.2010.05.052.

    Article  Google Scholar 

  15. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32(1) pp. 57-70. https://doi.org/10.1016/0001-6160(84)90202-5.

    Article  Google Scholar 

  16. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin: Acta Mater., 2009, vol. 57(9), pp. 2748-56. https://doi.org/10.1016/j.actamat.2009.02.033.

    Article  Google Scholar 

  17. A. Fernandez, P. Uranga, B. Lopez, and J. Rodriguezibabe: Mater. Sci. Eng. A, 2003, vol. 361(1-2), pp. 367-76. https://doi.org/10.1016/s0921-5093(03)00562-8.

    Article  Google Scholar 

  18. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A, 2002,vol. 322(1-2), pp. 43-63. https://doi.org/10.1016/s0921-5093(01)01117-0.

    Article  Google Scholar 

  19. J.M. Cabrera, A. Al Omar, J.M. Prado, and J.J. Jonas: Metall. Mater. Trans. A, 1997, vol. 28(11), pp. 2233-44. https://doi.org/10.1007/s11661-997-0181-8.

    Article  Google Scholar 

  20. J.M. Cabrera, J.J. Jonas, and J.M. Prado: Mater. Sci. Technol., 2013, vol. 12(7), pp. 579-85. https://doi.org/10.1179/mst.1996.12.7.579.

    Article  Google Scholar 

  21. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps-The Plasticity and Creep of Metals and Ceramics, Chapter 4, 1982.

  22. Jmatpro: The Materials Property Simulation Package, Public Release Version 6.1, Sente Software Ltd.

  23. J. Wang, H.T. Yang, X.G. Wang, and H. Xiao: Mater. Design, 2015, vol. 65, pp. 637-43. https://doi.org/10.1016/j.matdes.2014.09.072.

    Article  Google Scholar 

  24. Z. Akbari, H. Mirzadeh, and J.M. Cabrera: Mater. Des., 2015, vol. 77, pp. 126-31. https://doi.org/10.1016/j.matdes.2015.04.005.

    Article  Google Scholar 

  25. X. Ma, C. Miao, B. Langelier, and S. Subramanian: Mater. Design, 2017, vol. 132, pp. 244-49. https://doi.org/10.1016/j.matdes.2017.07.006.

    Article  Google Scholar 

  26. P. Gong, E.J. Palmiere, and W.M. Rainforth: Mater. Charact., 2017, vol. 124, pp. 83-89. https://doi.org/10.1016/j.matchar.2016.12.009.

    Article  Google Scholar 

  27. S.F. Medina: Acta Mater., 2015, vol. 84, pp. 202-07. https://doi.org/10.1016/j.actamat.2014.10.056.

    Article  Google Scholar 

  28. A.G. Kostryzhev, A. Al Shahrani, C. Zhu, J.M. Cairney, S.P. Ringer, C.R. Killmore, and E.V. Pereloma: Mater. Sci. Eng. A, 2014, vol. 607, pp. 226-35. https://doi.org/10.1016/j.msea.2014.03.140.

    Article  Google Scholar 

  29. K. Xu, B.G. Thomas, and R. O’malley: Metall. Mater. Trans. A, 2010, vol. 42(2), pp. 524-539. https://doi.org/10.1007/s11661-010-0428-7.

    Google Scholar 

  30. K. Frisk and U. Borggren: Metall. Mater. Trans. A, 2016, vol. 47(10), pp. 4806-17. https://doi.org/10.1007/s11661-016-3639-8.

    Article  Google Scholar 

  31. A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar: Mater. Sci. Eng. A, 2017, vol. 690, pp. 158-69. https://doi.org/10.1016/j.msea.2017.02.101.

    Article  Google Scholar 

  32. M.G. Akben, B. Bacroix, and J.J. Jonas: Acta Metall., 1983, vol. 31(1), pp. 161-74. https://doi.org/10.1016/0001-6160(83)90076-7.

    Article  Google Scholar 

  33. S.Q. Yuan and G.L. Liang: Mater. Lett., 2009, vol. 63(27), pp. 2324-26. https://doi.org/10.1016/j.matlet.2009.07.064.

    Article  Google Scholar 

  34. S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18(1), pp. 37-46. https://doi.org/10.1007/s12540-012-0005-2.

    Article  Google Scholar 

  35. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1986, vol. 2(2), pp. 146-53. https://doi.org/10.1179/mst.1986.2.2.146.

    Article  Google Scholar 

  36. N. Fujita, K. Ohmura, M. Kikuchi, T. Suzuki, S. Funaki, and I. Hiroshige: Scripta Mater., 1996, vol. 35(6), pp. 705-10. https://doi.org/10.1016/1359-6462(96)00214-x.

    Article  Google Scholar 

  37. S. Hong, K. Kang, and C. Park: Scripta mater., 2002, vol. 46(2), pp. 163-68. https://doi.org/10.1016/s1359-6462(01)01214-3.

    Article  Google Scholar 

  38. A. Schmitz, J. Neutjens, J. Herman, V. Leroy, and R.E. Solvay: 40th MWSP Conf Proc., ISS, Warrendale, PA, 1998, pp. 311–21.

  39. H.L. Wei and G.Q. Liu: Mater. Design, 2014, vol 56, pp. 437-444. https://doi.org/10.1016/j.matdes.2013.11.009.

    Article  Google Scholar 

  40. F.-r. Xiao, Y.-b. Cao, G.-y. Qiao, X.-b. Zhang, and L. Bo: J. Iron Steel Res. Int., 2012, vol. 19(11), pp. 52-56. https://doi.org/10.1016/s1006-706x(13)60020-5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the support of Iran National Science Foundation (INSF) for this research under the Project No. 94026725. This work was supported by Slovak Foundation VEGA Grant 2/0158/16 and by Grant APVV-14-0936.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Habibi Parsa.

Additional information

Manuscript submitted October 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, M.S., Parsa, M.H., Rezayat, M. et al. Analysis of Flow Behavior of an Nb-Ti Microalloyed Steel During Hot Deformation. Metall Mater Trans A 49, 1604–1614 (2018). https://doi.org/10.1007/s11661-018-4536-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4536-0

Navigation