Skip to main content
Log in

The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation potency of iron oxides was verified experimentally through nucleation undercooling of liquid iron using aerodynamic levitation technology for minimized container contaminations. Steady undercooling values were subsequently obtained from multiple melting and freezing thermal cycles, with the average undercooling values of 223 K ± 3 K and 75 K ± 6 K (223 °C ± 3 °C and 75 °C ± 6 °C) for FeO-contained liquid and Fe3O4-contained liquid, respectively. The statistical results showed a negligible difference in the sizes and numbers of particles between FeO and Fe3O4 particles, indicating that the nucleation potency difference is attributed to the nature of nucleants rather than particle size or numbers. Furthermore, high-resolution transmission electron microscopy analysis showed that the potential nucleation interfaces can be assumed as \( \{ 1 1 0\}_{{\delta {\text{{-}Fe}}}} //( 0 0\bar{2})_{\text{FeO}} \) and \( \{ 1 1 2\}_{{\delta {\text{{-}Fe}}}} //(\bar{2} 0 2 )_{{{\text{Fe}}_{3} {\text{O}}_{4} }} \), based on the detected exposed crystal planes of the oxide particles. Both the interfaces have relatively large values of lattice misfit, consistent with the experimentally measured undercooling based on Turnbull’s lattice matching theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Pujilaksono, T. Jonsson, M. Halvarsson, J. Svensson and L. Johansson: Corros. Sci., 2010, vol. 52, pp. 1560–69.

    Article  Google Scholar 

  2. J. Yuan, W. Wang, S. Zhu and F. Wang: Corros. Sci., 2013, vol. 75, pp. 309–17.

    Article  Google Scholar 

  3. H. Li, A. Mclean, J.W. Rutter and I.D. Sommerville: Metal. Trans. B (Process Metallurgy), 1988, vol. 19B, pp. 383–95.

    Article  Google Scholar 

  4. T. Suzuki, J. Inoue and T. Koseki: ISIJ Int., 2007, vol. 47, pp. 847–52.

    Article  Google Scholar 

  5. Y. Nuri, T. Ohashi, T. Hiromoto and O. Kitamura: Transaction ISIJ, 1982, vol. 22, pp. 399–407.

    Article  Google Scholar 

  6. K. Nakajima, H. Hasegawa, S. Khumkoa and S. Mizoguchi: Metall. Mater. Trans. B, 2003, vol. 34, pp. 539–47.

    Article  Google Scholar 

  7. K. Zhu and Z. Yang: J. Mater. Sci. Technol., 2011, vol. 27, pp. 252–56.

    Article  Google Scholar 

  8. Ø. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons and J. Hjelen: Metall. Mater. Trans. A, 1995, vol. 26, pp. 525–34.

    Article  Google Scholar 

  9. A. Hunter and M. Ferry: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1499–507.

    Article  Google Scholar 

  10. Y. Kang, S. Jeong, J. Kang and C. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2842–54.

    Article  Google Scholar 

  11. T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859–68.

    Article  Google Scholar 

  12. Z. Fan, Y. Wang, M. Xia and S. Arumuganathar: Acta Mater., 2009, vol. 57, pp. 4891–4901.

    Article  Google Scholar 

  13. Y. Wang, Z. Fan, X. Zhou and G.E. Thompson: Phil. Mag. Lett., 2011, vol. 91, pp. 516–29.

    Article  Google Scholar 

  14. J. Du, Y. Shi, M. Zhou and W. Li: J. Mater. Sci. Technol., 2016, vol. 32, pp. 1297–1302.

    Article  Google Scholar 

  15. L. Wang, L. Yang, D. Zhang, M. Xia, Y. Wang and J.G. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5012–22.

    Article  Google Scholar 

  16. L. Wang, W. Lu, Q. Hu, M. Xia, Y. Wang and J. Li: Acta Mater., 2017, vol. 139, pp. 75–85.

    Article  Google Scholar 

  17. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  Google Scholar 

  18. D. Turnbull and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292–98.

    Article  Google Scholar 

  19. M.X. Zhang, P.M. Kelly, M. Qian and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 3261–70.

    Article  Google Scholar 

  20. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo and M.X. Huang: Science, 2017, vol. p. n177.

  21. G.W. Lee, S. Jeon and D. Kang: Cryst. Growth Des., 2013, vol. 13, pp. 1786–92.

    Article  Google Scholar 

  22. G. Wille, F. Millot and J.C. Rifflet: Int. J. Thermophys., 2002, vol. 23, pp. 1197–1206.

    Article  Google Scholar 

  23. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  Google Scholar 

  24. A. Karasev and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30, pp. 259–70.

    Article  Google Scholar 

  25. M. Akimitsu, T. Mizoguchi and S. Kimura: J. Phys. Chem. Solids, 1983, vol. 44, pp. 497–505.

    Article  Google Scholar 

  26. S. Mitra, P. Poizot, A. Finke and J.M. Tarascon: Adv. Funct. Mater., 2006, vol. 16, pp. 2281–87.

    Article  Google Scholar 

  27. T. J. Ahrens: Mineral physics & crystallography: a handbook of physical constants, American Geophysical Union, Washington DC, 1995.

    Book  Google Scholar 

  28. T. Mizoguchi and J.H. Perepezko: Mat. Sci. Eng. A-Struct., 1997, vol. 226, pp. 813–17.

    Article  Google Scholar 

  29. B. Cantor: Philos. T. R. Soc. A, 2003, vol. 361, pp. 409–16.

    Article  Google Scholar 

  30. H.T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol. 60, pp. 1528–37.

    Article  Google Scholar 

  31. D. Zhang, L. Wang, M. Xia, N. Hari Babu and J.G. Li: Mater. Charact., 2016, vol. 119, pp. 92–98.

    Article  Google Scholar 

  32. Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian and T. Wang: Acta Mater., 2016, vol. 120, pp. 168–78.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (Nos. 51474148 and 51727802), the Shanghai International Cooperation Project (Grant No. 14140711000), and the Joint Funds of the National Natural Science Foundation of China (No. U1660203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxu Xia.

Additional information

Manuscript submitted 22 October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Wang, L., Lu, W. et al. The Nucleation Potency of In Situ-Formed Oxides in Liquid Iron. Metall Mater Trans A 49, 1762–1769 (2018). https://doi.org/10.1007/s11661-018-4528-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4528-0

Navigation