Skip to main content
Log in

Measurement of Diffusion Coefficients in the bcc Phase of the Ti-Sn and Zr-Sn Binary Systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sn and Zr are two important alloying elements in low-modulus biomedical titanium alloys, yet experimental data on Sn diffusion in bcc Ti and bcc Zr are still very limited in the literature, and thus were systematically measured in the present study using solid–solid diffusion couples (SSDCs) and novel liquid–solid diffusion couples (LSDCs). Both interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti-Sn and Zr-Sn systems were extracted with forward-simulation analysis (FSA), and show good agreement with existing literature. The interdiffusion coefficients in the Ti-Sn system at six temperatures, from 950 °C to 1200 °C, extend experimental measurements to a much wider composition range, and the interdiffusion coefficients in the Zr-Sn system at 1200 °C, 1150 °C, and 1100 °C are the first such data experimentally measured. The data obtained from this study, together with our previous data for the Ti-X (X = Cr, Hf, Mo, Nb, V, Zr) systems, provide reliable experimental inputs to improve the mobility databases for advanced Ti alloys development. In addition, the excellent agreement between the LSDCs and SSDCs results validates the reliability of this novel approach by combining LSDC experiments and FSA in evaluating diffusion coefficients at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.S. de Viteri and E. Fuentes (2013) Titanium and Titanium Alloys as Biomaterials, In: J. Gegner (eds): Tribology: Fundamentals and Advancements, IntechOpen, Rijeka.

    Google Scholar 

  2. H.J. Rack and J.I. Qazi: Mater. Sci. Eng. C, 2006, vol. 26, pp. 1269-77.

    Article  Google Scholar 

  3. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397-425.

    Article  Google Scholar 

  4. M. Niinomi, M. Nakai, and J. Hieda: Acta Biomater., 2012, vol. 8, pp. 3888-903.

    Article  Google Scholar 

  5. M. Niinomi, Y. Liu, M. Nakai, H.H. Liu, and H. Li: Regener. Biomater., 2016, vol. 3, pp. 173-85.

    Article  Google Scholar 

  6. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244-49.

    Article  Google Scholar 

  7. M. Niinomi: J. Mech. Behav. Biomed. Mater., 2008, vol. 1, pp. 30-42.

    Article  Google Scholar 

  8. M. Niinomi, D. Kuroda, K.-i. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A. Suzuki: Mater. Sci. Eng. A, 1999, vol. 263, pp. 193-9.

    Article  Google Scholar 

  9. E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme: Biomater., 2004, vol. 25, pp. 5705-13.

    Article  Google Scholar 

  10. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang: Acta Biomater., 2007, vol. 3, pp. 277-86.

    Article  Google Scholar 

  11. T.K. Jung, H. Matsumoto, T. Abumiya, N. Masahashi, M.S. Kim, and S. Hanada: Mater. Sci. Forum, 2010, vol. 631-632, pp. 205-10.

    Google Scholar 

  12. K. Miura, N. Yamada, S. Hanada, T.-K. Jung, and E. Itoi: Acta Biomater., 2011, vol. 7, pp. 2320-6.

    Article  Google Scholar 

  13. M. Niinomi, T. Narushima, and M. Nakai: Advances in Metallic Biomaterials, Springer, Heidelberg, 2015.

    Google Scholar 

  14. M. González, E. Salvagni, J.C. Rodríguez-Cabello, E. Rupérez, F.J. Gil, J. Peña, and J.M. Manero: J. Biomed. Mater. Res. A, 2013, vol. 101A, pp. 819-26.

    Article  Google Scholar 

  15. M. González, J. Peña, F.J. Gil, and J.M. Manero: Mater. Sci. Eng. C, 2014, vol. 42, pp. 691-5.

    Article  Google Scholar 

  16. Q. Chen, L. Liu, and S-M. Zhang: Front. Mater. Sci. China, 2010, vol. 4, pp. 34-44.

    Article  Google Scholar 

  17. Y.B. Wang, Y.F. Zheng, S.C Wei, and M. Li: J. Biomed. Mater. Res. B, 2011, vol. 96, pp. 34-46.

    Article  Google Scholar 

  18. N.B. Hua, L. Huang, W.Z. Chen, W. He, and T. Zhang: Mater. Sci. Eng. C, 2014, vol. 44, pp. 400-10.

    Article  Google Scholar 

  19. C. Lémaignan and A.T. Motta: Zirconium alloys in nuclear applications, In: R.W. Cahn, P. Haasen, and E.J. Kramer(eds): Materials Science and Technology vol. 10B, Wiley-VCH, Weinheim, 1994, pp. 1-51.

    Google Scholar 

  20. B. Cox: J. Nucl. Mater., 2005, vol. 336, pp. 331-68.

    Article  Google Scholar 

  21. K. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189-95.

    Article  Google Scholar 

  22. F.Y. Zhou, B.L. Wang, K.J. Qiu, H.F. Li, L. Li, Y.F. Zheng, and Y. Han: Appl. Surf. Sci., 2013, vol. 265, pp. 878-88.

    Article  Google Scholar 

  23. S. Guo, Y. Shang, J.M. Zhang, J.S. Zhang, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: J. Alloy Compd., 2018, vol. 754, pp. 232-7.

    Article  Google Scholar 

  24. S. Guo, J.M. Zhang, Y. Shang, J.S. Zhang, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: J. Alloy Compd., 2018, vol. 745, pp. 234-9.

    Article  Google Scholar 

  25. S. Banerjee and P. Mukhopadhyay: Phase Transformations: Examples from Titanium and Zirconium Alloys, Elsevier, Oxford, 2010.

    Google Scholar 

  26. L.L. Zhu, Q.F. Zhang, Z.Q. Chen, C.D. Wei, G.M. Cai, L. Jiang, Z.P. Jin, and J.-C. Zhao: J. Mater. Sci., 2017, vol. 52, pp. 3255-68.

    Article  Google Scholar 

  27. W. Zhong and J.-C. Zhao: Scr. Mater., 2017, vol. 127, pp. 92-6.

    Article  Google Scholar 

  28. W. Zhong and J.-C. Zhao: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5778-82.

    Article  Google Scholar 

  29. J. Askill and G.B. Gibbs: Phys. Status Solidi B, 1965, vol. 11, pp. 557-65.

    Article  Google Scholar 

  30. Y. Iijima, S.Y. Lee, and K.I. Hirano: Philos. Mag. A, 1993, vol. 68, pp. 901-14.

    Article  Google Scholar 

  31. L. Boltzmann: Ann. Phys., 1894, vol. 289, pp. 959-64.

    Article  Google Scholar 

  32. C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109-13.

    Google Scholar 

  33. H. Araki, T. Yamane, Y. Minamino, S. Saji, Y. Fujiishi, and Y. Miyamoto (1993) Mater. Trans., JIM, 34, 763-70.

    Article  Google Scholar 

  34. J.L. Wang, L.B. Liu, B.Y. Tuo, W.M. Bai, X. Wang, X. Li, and X.P. Hu: J. Phase Equilib. Diffus., 2015, vol. 36, pp. 248-53.

    Article  Google Scholar 

  35. B. Chelluri, D. Lazarus, and C.A. Wert: Phys. Rev. B, 1981, vol. 23, pp. 4849-58.

    Article  Google Scholar 

  36. G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Amsterdam, 2011.

    Google Scholar 

  37. ASM Alloy Phase Diagrams Database, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www.asminternational.org, ASM International, Materials Park, OH, (2016).

  38. Q.F. Zhang and J.-C. Zhao: Intermetallics, 2013, vol. 34, pp. 132-41.

    Article  Google Scholar 

  39. Q.F. Zhang and J.-C. Zhao: J. Alloys Compd., 2014, vol. 604, pp. 142-50.

    Article  Google Scholar 

  40. Q.F. Zhang, Z.Q. Chen, W. Zhong, and J.-C. Zhao: Scr. Mater., 2017, vol. 128, pp. 32-5.

    Article  Google Scholar 

  41. Z.Q. Chen, Z.K. Liu, and J.-C. Zhao: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3108-16.

    Article  Google Scholar 

  42. M.E. Glicksman: Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley, New York, 2000.

    Google Scholar 

  43. L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184-201.

    Google Scholar 

Download references

Acknowledgment

Financial support by grants from the National Key Research and Development Plan (Nos. 2016YFB0701301 and 2018YFE0306101), Major State Basic Research Development Programs of China (No. 2014CB6644002), and the Project of Innovation-driven Plan in Central South University (No. 2015CX004) is gratefully acknowledged. The project is also partially supported by State Key Laboratory of Powder Metallurgy (Central South University, Changsha, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gemei Cai or Ji-Cheng Zhao.

Additional information

Manuscript submitted July 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Chen, Z., Zhong, W. et al. Measurement of Diffusion Coefficients in the bcc Phase of the Ti-Sn and Zr-Sn Binary Systems. Metall Mater Trans A 50, 1409–1420 (2019). https://doi.org/10.1007/s11661-018-05107-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-05107-7

Navigation