Skip to main content
Log in

Tempering of Martensite and Subsequent Redistribution of Cr, Mn, Ni, Mo, and Si Between Cementite and Martensite Studied by Magnetic Measurements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tempering reactions in ternary Fe-2M-0.7C steels (M=Cr, Ni, Mn, Mo, and Si) were studied by correlative dilatometry and magnetic measurements at room temperature. Magnetic measurements were conducted after tempering at progressively higher temperatures. Based on the magnitude of demagnetization in the temperature range associated with the tempering stage I contraction, Mn- and Si-added steels formed the largest and smallest fractions of transition carbides, respectively. Estimation of the magnetization of paraequilibrium cementite indicated that Cr, Mn, and Mo reduced the magnetization while Ni increased it. In the presence of Si, the decomposition of retained austenite and cementite formation were shifted to higher temperatures. At temperatures above approximately 723 K (450 °C), the enrichment of cementite with Mn and Cr significantly reduced the total magnetization. In the Mo-added steel, on the other hand, the magnetization slightly increased implying the formation of ferromagnetic Mo-rich carbides. For the Ni- and Si-added steels, the magnetization remained almost constant indicating minimal redistribution of Ni and Si subsequent to the formation of cementite. The possibility of analyzing the latter redistribution is one of the main advantages of sequential tempering and magnetic measurements at room temperature compared to in situ thermomagnetic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. K. Miller, P. A. Beaven, and G. D. W. Smith: Metall. Trans. A, 1981, vol. 12, pp. 1197–1204.

    Article  Google Scholar 

  2. S. J. Barnard, G. D. W. Smith, M. Sarikaya, and G. Thomas: Scr. Metall., 1981, vol. 15, pp. 387–92.

    Article  Google Scholar 

  3. Christoph Lerchbacher, Silvia Zinner, and Harald Leitner: Micron, 2012, vol. 43, pp. 818–26.

    Article  Google Scholar 

  4. Keith A. Taylor and Morris Cohen: Prog. Mater. Sci., 1992, vol. 36, pp. 151–272.

    Article  Google Scholar 

  5. Y. Ohmori and I. Tamura: Metall. Trans. A, 1992, vol. 23, pp. 2737–51.

    Article  Google Scholar 

  6. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura: Metall. Mater. Trans. A, 1983, vol. 14, pp. 1025–31.

    Article  Google Scholar 

  7. G. R. Speich and W. C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  Google Scholar 

  8. C. B. Ma, T. Ando, D. L. Williamson, and G. Krauss: Metall. Trans. A, 1981, vol. 14, pp. 1033–45.

    Article  Google Scholar 

  9. W. Crafts and J.L. Lamont: AIME Tech. Publ., 1948, pp. 1–42.

  10. T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.

    Article  Google Scholar 

  11. Minsu Jung, Seok-Jae Lee, and Young-Kook Lee: Metall. Mater. Trans. A, 2009, vol. 40, pp. 551–59.

    Article  Google Scholar 

  12. Liu Cheng, C. M. Brakman, B. M. Korevaar, and E. J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.

    Article  Google Scholar 

  13. Liu Cheng and E. J. Mittemeijer: Metall. Trans. A, 1990, vol. 21, pp. 13–26.

    Article  Google Scholar 

  14. Jae-Gil Jung, Minsu Jung, Singon Kang, and Young-Kook Lee: J. Mater. Sci., 2013, vol. 49, pp. 2204–12.

    Article  Google Scholar 

  15. M. Preciado and M. Pellizzari: J. Mater. Sci., 2014, vol. 49, pp. 8183–91.

    Article  Google Scholar 

  16. S. Primig and H. Leitner: Thermochim. Acta, 2011, vol. 526, pp. 111–17.

    Article  Google Scholar 

  17. V. G Gavriljuk: Mater. Sci. Eng. A, 2003, vol. 345, pp. 81–89.

    Article  Google Scholar 

  18. Ph Dünner and S Müller: Acta Metall., 1965, vol. 13, pp. 25–36.

    Article  Google Scholar 

  19. H. S. Yang and H. K. D. H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23, pp. 556–60.

    Article  Google Scholar 

  20. J. Crangle and G. M. Goodman: Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1971, vol. 321, pp. 477–91.

    Article  Google Scholar 

  21. A. T. Aldred: Phys. Rev. B, 1976, vol. 14, pp. 219–27.

    Article  Google Scholar 

  22. Hiroshi Yamauchi, Hiroshi Watanabe, Yūichi Suzuki, and Hideo Saito: J. Phys. Soc. Jpn., 1974, vol. 36, pp. 971–74.

    Article  Google Scholar 

  23. D. Parsons, W. Sucksmith, and J. E. Thompson: Philos. Mag., 1958, vol. 3, pp. 1174–1184.

    Article  Google Scholar 

  24. J. Crangle and G. C. Hallam: Proc. R. Soc. Lond. Math. Phys. Eng. Sci., 1963, vol. 272, pp. 119–32.

    Article  Google Scholar 

  25. A. T. Aldred: J. Phys. C Solid State Phys., 1968, vol. 1, p. 244.

    Article  Google Scholar 

  26. Javad Mola and Bruno C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 946–67.

    Article  Google Scholar 

  27. R. Rahimi, H. Biermann, J. Mola, and R. Ritzenhoff: in HNS 2014, Hamburg, Germany, 2014, pp. 182–90.

  28. R. M. Horn and Robert O. Ritchie: Metall. Trans. A, 1978, vol. 9, pp. 1039–53.

    Article  Google Scholar 

  29. L. J. E. Hofer and Ernst M. Cohn: J. Am. Chem. Soc., 1959, vol. 81, pp. 1576–82.

    Article  Google Scholar 

  30. K. O. Findley, J. Hidalgo, R. M. Huizenga, and M. J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248–56.

    Article  Google Scholar 

  31. Chen Zhu, X. Y. Xiong, A. Cerezo, R. Hardwicke, G Krauss, and G. D. W. Smith: Ultramicroscopy, 2007, vol. 107, pp. 808–12.

    Article  Google Scholar 

  32. A. J. Clarke, M. K. Miller, R. D. Field, D. R. Coughlin, P. J. Gibbs, K. D. Clarke, D. J. Alexander, K. A. Powers, P. A. Papin, and G. Krauss: Acta Mater., 2014, vol. 77, pp. 17–27.

    Article  Google Scholar 

  33. J. Akré, F. Danoix, H. Leitner, and P. Auger: Ultramicroscopy, 2009, vol. 109, pp. 518–23.

    Article  Google Scholar 

  34. Akio Kagawa and Taira Okamoto: Trans. Jpn. Inst. Met., 1979, vol. 20, pp. 659–66.

    Article  Google Scholar 

  35. G. P. Huffman, P. R. Errington, and R. M. Fisher: Phys. Status Solidi B, 1967, vol. 22, pp. 473–81.

    Article  Google Scholar 

  36. Toshihiko Shigematsu: J. Phys. Soc. Jpn., 1974, vol. 37, pp. 940–45.

    Article  Google Scholar 

  37. Eun Jung Seo, Lawrence Cho, Yuri Estrin, and Bruno C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.

    Article  Google Scholar 

  38. W. Pepperhoff and M. Acet: Constitution and Magnetism of Iron and Its Alloys, 1st ed., Springer, Berlin, 2001.

  39. B.A. Apaev: Magnetic phase analysis of alloys, Moscow Steel, Moscow, 1976.

    Google Scholar 

  40. T. P. Hou, Y. Li, Y. D. Zhang, and K. M. Wu: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2553–61.

    Article  Google Scholar 

  41. Y. J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim: Acta Mater., 2012, vol. 60, pp. 4005–16.

    Article  Google Scholar 

  42. I. Jacobs: IEEE Trans. Magn., 1985, vol. 21, pp. 1306–9.

    Article  Google Scholar 

  43. Gul Rahman, In Gee Kim, H. K. D. H. Bhadeshia, and Arthur J. Freeman: Phys. Rev. B, 2010, vol. 81, p. 184423.

    Article  Google Scholar 

  44. Masatoshi Onoue, Giancarlo Trimarchi, Arthur J. Freeman, Voicu Popescu, and Marc R. Matsen: J. Appl. Phys., 2015, vol. 117, p. 043912.

    Article  Google Scholar 

Download references

Acknowledgments

The support of technical staff at the Institute of Iron and Steel Technology of TU Bergakademie Freiberg is gratefully acknowledged. G. Luan would like to thank the support of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mola.

Additional information

Manuscript submitted March 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mola, J., Luan, G., Brochnow, D. et al. Tempering of Martensite and Subsequent Redistribution of Cr, Mn, Ni, Mo, and Si Between Cementite and Martensite Studied by Magnetic Measurements. Metall Mater Trans A 48, 5805–5812 (2017). https://doi.org/10.1007/s11661-017-4374-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4374-5

Navigation