Skip to main content
Log in

Modeling of Non-isothermal Austenite Formation in Spring Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The austenitization kinetics description of spring steel 60Si2CrA plays an important role in providing guidelines for industrial production. The dilatometric curves of 60Si2CrA steel were measured using a dilatometer DIL805A at heating rates of 0.3 K to 50 K/s (0.3 °C/s to 50 °C/s). Based on the dilatometric curves, a unified kinetics model using the internal state variable (ISV) method was derived to describe the non-isothermal austenitization kinetics of 60Si2CrA, and the abovementioned model models the incubation and transition periods. The material constants in the model were determined using a genetic algorithm-based optimization technique. Additionally, good agreement between predicted and experimental volume fractions of transformed austenite was obtained, indicating that the model is effective for describing the austenitization kinetics of 60Si2CrA steel. Compared with other modeling methods of austenitization kinetics, this model, which uses the ISV method, has some advantages, such as a simple formula and explicit physics meaning, and can be probably used in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Chen, C. Wu, A. Zhao, H. Fan, X. Li, and S. Yao: Hot. Working. Tech., 2016, vol. 45, pp. 196-198.

    Google Scholar 

  2. C. Zhang, B. Wang, J. Zhou, Y. Huo, and H. Huang: Heat. Treat. Metals., 2016, vol. 41, pp. 117-120.

    Google Scholar 

  3. T. Wang, X. Li, F. Zhang, and Y. Zheng: Mater. Sci. Eng. A, 2006, vols. 438-440, pp. 1124-1127.

    Article  Google Scholar 

  4. X. Zhao, W. Hui, L. Cai, and Z. Wang: Heat. Treat. Metals., 2010, vol. 35, pp. 13-16.

    Google Scholar 

  5. H. Zhao, W. Hui, Y. Nie, Y. Weng, and H. Dong: Chin. J. Mater. Res., 2008, vol. 22, pp. 526-532.

    Google Scholar 

  6. J. Xu, Y. Liang, Y. Jiang, S. Long, and L. Zhong: T. Mater. Heat. Treat., 2015, vol. 36, pp. 134-139.

    Google Scholar 

  7. A. Kumar, S. Mishra, T. Debroy, and J.W. Elmer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 15-22.

    Article  Google Scholar 

  8. J. Farjas and P. Roura: Acta. Mater., 2008, vol. 54, pp. 5573-5579.

    Article  Google Scholar 

  9. K. Chen, J. Gu, L. Han, and J. Pan: T. Mater. Heat. Treat., 2013, vol. 34, pp. 170-174.

    Google Scholar 

  10. 10. H. Li, K. Gai, L. He, C. Zhang, H. Cui, and M. Li: Mater. Des., 2016, vol. 92, pp. 731-741.

    Article  Google Scholar 

  11. 11. E.J. Mittemeijer. J. Mater. Sci., 1992, vol. 27, pp. 3977-3987.

    Article  Google Scholar 

  12. A.T.W. Kempen, F. Sommer, and E.J. Mittemeijer: J. Mater. Sci., 2002, vol. 37, pp. 1321-1332.

    Article  Google Scholar 

  13. F. Liu, F. Sommer, and E.J. Mittemeijer: J. Mater. Sci., 2004, vol. 39, pp: 1621-1634.

    Article  Google Scholar 

  14. P. Simon: J. Therm. Anal. Calorim., 2004, vol. 76, pp. 123-132.

    Article  Google Scholar 

  15. X. Luo, L. Han, and J. Gu. Metals., 2006, vol. 6, pp. 1-14.

    Google Scholar 

  16. Ø. Grong and H.R. Shercliff: Prog. Mater. Sci., 2006, vol. 47, pp: 163-282.

    Article  Google Scholar 

  17. J. Cao and J. Lin: Int. J. Mech. Sci., 2008, vol. 50, pp. 193-204.

    Article  Google Scholar 

  18. J. Cao, J. Lin, and T. A. Dean: Int. J. Number. Meth. Eng., 2008, vol. 73, pp. 1094-1112.

    Article  Google Scholar 

  19. J. Lin and J. Yang: Int. J. Plast., 1999, vol. 15, pp. 1181-1196.

    Article  Google Scholar 

  20. J. Cai: Imperial College London, England, 2011, pp. 166.

  21. M. Huang: University Science and Technology Beijing, China, 2016, pp. 117.

  22. N. Li, J. Lin, T. A. Dean, D. Dry, and D. Balint: Procedia. Eng., 2014, vol. 81, pp. 1675-1681.

    Article  Google Scholar 

  23. N. Li, J. Lin, D.S. Balint, and T.A. Dean: J. Mater. Process. Tech., 2016, vol. 237, pp. 394-401.

    Article  Google Scholar 

  24. T. Waterschoot, K. Verbeken, and C. De. ISIJ Int., 2006, vol. 46, pp. 138-146.

    Article  Google Scholar 

  25. W. Ma, B. Wang, J. Bian, X. Tang, L. Yang, and Y. Huo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2748-2757.

    Article  Google Scholar 

  26. X. Tang, B. Wang, Y. Huo, W. Ma, J. Zhou, H. Ji, and X. Fu: Mater. Sci. Eng. A, 2016, vol. 662, pp. 54-64.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Beijing Municipal and Technology Development Funds [Grant Number D151100003515002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyu Wang.

Additional information

Manuscript submitted March 24, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, B., Tang, X. et al. Modeling of Non-isothermal Austenite Formation in Spring Steel. Metall Mater Trans A 48, 5799–5804 (2017). https://doi.org/10.1007/s11661-017-4368-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4368-3

Navigation