Skip to main content
Log in

Influence of Heavy Fermion Ytterbium Substitution on the Electronic and Crystal Properties of the Frustrated Magnet CuFeO2 Oxide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of heavy fermion Ytterbium substitution was investigated on the crystal, electronic, and magnetic properties of CuFeO2 with the general formula Yb x Cu1−x FeO2. The results of the crystal structure study revealed polycrystalline formations in the sample. The electronic and magnetic properties of the samples were studied using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques. Both XAS and XMCD revealed that the substituted Yb atoms govern the entire phenomena with their narrow 4f levels by forming broader molecular bonds with the 3d levels of the transition metals. Owing to the prominent changes caused by the activity of the 4f electrons in the crystal structures, Yb atoms were determined to be the main “role player” in the phase transitions. XMCD measurements were performed at room temperature 300 K (27 °C) to determine the magnetic properties of the samples and, except for CuFeO2 (x = 0.0), the samples were observed to be ordered magnetically (mainly ferrimagnetic) in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] P.S. Miedema and FMF De Groot: J Elect Spect Rel Phe. 2013, vol. 187, pp. 32-48

    Article  Google Scholar 

  2. [2] Osman Murat Ozkendir: Journal of Electronic Materials, 2013, vol. 42 (6), pp. 1055-1062

    Article  Google Scholar 

  3. K. Mori, M. Hachisu, T. Yamazaki and Y. Ichiyanagi: Journal of Applied Physics, 2015, vol. 117, pp. 17C756

    Article  Google Scholar 

  4. [4] O.M. Ozkendir: J Metallurgical and Materials Transactions A, 2016, vol 47A, pp 2906-29013

    Article  Google Scholar 

  5. [5] H. Takahashi, Y. Motegi, R. Tsuchigane and M. Hasegawa: 2004, J. Magn. Magn. Mater., vol. 217, pp. 272-276

    Google Scholar 

  6. [6] L.J. Downie, R.J. Goff, W. Kockelmann, S.D. Forder, J.E. Parker, F.D. Morrison and P. Lightfoot: J Solid State Chemistry, 2012, vol 190, pp. 52-60

    Article  Google Scholar 

  7. [7] V. Krishnan, R.K. Selvan, C.O. Augustin, A. Gedanken and H. Bertagnolli: J Phys Chem 2007, vol. C111, pp. 16724-16733

    Google Scholar 

  8. [8] I. Yamada: Journal of the Ceramic Society of Japan, 2014, vol. 122(10), pp. 846-851

    Article  Google Scholar 

  9. [9] C. Ruihua, C.N. Bora, P.A. Dowbcena, S. Stadler and Y.U. Idzerda: Applied Physics Letters, 2001, vol. 78, p. 521

    Article  Google Scholar 

  10. [10] K. Yoshi, M. Mizumaki, K. Matsumoto, S. Mori, N. Endo, H. Saitoh, D. Matsumura, T. Kambe and N. Ikeda: J Phys 2013, vol. 428, pp. 012032

    Google Scholar 

  11. [11] H. O. Abd-Alkader and N.M. Dearz: 2013, Int. J. Electrochem. Sci., vol. 8, pp. 8614-8622

    Google Scholar 

  12. L. Lutterotti and M. Bortolotti: IUCr, 2003, vol 1, p. 43

  13. I.A. Kowalik, G. Öhrwall, B.N. Jensen, R. Sankari, E. Wallen, U. Johansson, O. Karis and D. Arvanitis: J Physics, 2010, vol. 211, p. 012030

    Google Scholar 

  14. O.M. Ozkendir: J of Optoelectron Adv Mater Rapid Commun, 2009, vol. 3, pp. 586

    Google Scholar 

  15. Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Murakami Y, Kakurai K, Yoshii K, Mori S, Horibe Y and Kito H: Nature, 2005, vol. 436, p. 1136

    Article  Google Scholar 

  16. [16] Yoshii K, Ikeda N, Matsuo Y, Horibe Y and Mori S: 2007, Phys. Rev. B, vol 76, pp. 024423

    Article  Google Scholar 

  17. Oka K, Azuma M, Hayashi N, Muranaka S, Narumi Y, Kindo K, Ayukawa S, Kato M, Koike Y, Shimakawa Y and Takano M: J Phys Soc Jpn, 2008, vol. 77, p. 064803

    Article  Google Scholar 

  18. [18] Y. K. Jeong, J-H Lee, S-J Ahn, S-W Song, H. M. Jang,H. Choi and James F. Scott: 2012, J. Am. Chem.Soc., vol. 134, pp. 1450−1453

    Article  Google Scholar 

  19. H. Pinto, G. Shachar and H. Shaked: Solid State Communications, 1970, vol. 8(8), pp. 597-599

    Article  Google Scholar 

  20. M.A. Willard, Y. Nakamura, D.E. Laughlin and M.E. McHenry: J Am Ceram Soc, 1999, vol. 82(12), pp. 3342–46

    Article  Google Scholar 

  21. I. Yamada: Journal of the Ceramic Society of Japan, 2014, vol. 122(10), pp. 846-851

    Article  Google Scholar 

  22. L. Lutterotti and M. Bortolotti: IUCr, 2003, vol. 1, pp. 43–50

  23. N.H. Chau, N.H. Dug, T.D. Hien, K. Krop and J. Zukrowsk: Phys. Stat. Sol. (A), 1989, vol 114, pp. 361–367

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank to Dr. Gunnar Ohrwall from MAX-lab. Beamline I1011 (Lund, Sweden). This study was supported financially by “2015-AP4-1153” project of Mersin University (Mersin, Turkiye). Additionally, the research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) CALIPSO under Grant Agreement No 312284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Murat Ozkendir.

Additional information

Manuscript submitted November 28, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkendir, O.M. Influence of Heavy Fermion Ytterbium Substitution on the Electronic and Crystal Properties of the Frustrated Magnet CuFeO2 Oxide. Metall Mater Trans A 48, 5738–5746 (2017). https://doi.org/10.1007/s11661-017-4308-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4308-2

Navigation