Skip to main content
Log in

Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: \( B \ge kG^{ - 1.5} R^{1.25} \). The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Asai: Sci. Technol. Adv. Mater., 2000, vol. 1, pp. 191–200.

    Article  Google Scholar 

  2. S. Chandrasekhar: Philos. Mag. Ser., 1954, vol. 45, pp. 1177–91.

    Article  Google Scholar 

  3. D. Samanta and N. Zabaras: Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 4850–66.

    Article  Google Scholar 

  4. A. Kao, B. Cai, P.D. Lee, and K. Pericleous: J. Cryst. Growth, 2017, vol. 457, pp. 270–74.

    Article  Google Scholar 

  5. Q. Wang, T. Liu, A. Gao, C. Zhang, C.J. Wang, and J.C. He: Scripta Mater., 2007, vol. 56, pp. 1087–90.

    Article  Google Scholar 

  6. X. Li, A. Gagnoud, Z.M. Ren, Y. Fautrelle, and R. Moreau: Acta Mater., 2009, vol. 57, pp. 2180–97.

    Article  Google Scholar 

  7. J. Wang, Z.M. Ren, Y. Fautrelle, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G.S.A. Jaoude, Y.B. Zhong, I. Kaldre, and A. Bojarevics: J. Mater. Sci., 2013, vol. 48, pp. 213–19.

    Article  Google Scholar 

  8. X. Li, Y. Fautrelle, and Z.M. Ren: Scripta Mater., 2008, vol. 59, pp. 407–10.

    Article  Google Scholar 

  9. Y. Mitsui, K. Oikawa, K. Koyama, and K. Watanabe: J. Alloys Compd., 2013, vol. 577, pp. 315–19.

    Article  Google Scholar 

  10. L. Li, Z.H. Zhao, Y.B. Zuo, Q.F. Zhu, and J.Z. Cui: J. Mater. Res., 2013, vol. 28, pp. 1567–73.

    Article  Google Scholar 

  11. S. Asai: ISIJ Int., 2007, vol. 47, pp. 519–22.

    Article  Google Scholar 

  12. X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: J. Cryst. Growth, 2010, vol. 312, pp. 267–72.

    Article  Google Scholar 

  13. X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321–32.

    Article  Google Scholar 

  14. W.D. Xuan, Z.M. Ren, and C.J. Li: J. Alloy Compd., 2015, vol. 620, pp. 10–17.

    Article  Google Scholar 

  15. D.F. Du, L. Hou, A. Gagnoud, Z.M. Ren, Y. Fautrelle, G.H. Cao, and X. Li: J. Alloy Compd., 2014, vol. 588, pp. 190–98.

    Article  Google Scholar 

  16. Y. Mishima, S. Ochiai, and Y.M. Yodagama: Trans. JIM, 1986, vol. 27, pp. 41–50.

    Article  Google Scholar 

  17. P. Jozwik, W. Polkowski, and Z. Bojar: Materials, 2015, vol. 8, pp. 2537–68.

    Article  Google Scholar 

  18. S.C. Deevi, V.K. Sikka, and C.T. Liu: Progr. Mater. Sci., 1997, vol. 42, pp. 177–92.

    Article  Google Scholar 

  19. K. Aoki and O. Izumi: J. Jpn. Inst. Met., 1979, vol. 43, pp. 358–59.

    Article  Google Scholar 

  20. S.C. Deevi and V.K. Sikka: Intermetallics, 1996, vol. 4, pp. 357–75.

    Article  Google Scholar 

  21. V.K. Sikka, M.L. Santella, and J.E. Orth: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 564–69.

    Article  Google Scholar 

  22. N.S. Stoloff, C.T. Liu, and S.C. Deevi: Intermetallics, 2000, vol. 8, pp. 1313–20.

    Article  Google Scholar 

  23. V.K. Sikka, J.T. Mavity, and K. Anderson: Mater. Sci. Eng. A, 1992, vol. 153, pp. 712–21.

    Article  Google Scholar 

  24. C.T. Liu and V.K. Sikka: JOM, 1986, vol. 38, pp. 19–21.

    Article  Google Scholar 

  25. V.K. Sikka, S.C. Deevi, S. Viswanathan, R.W. Swindeman, and M.L. Santella: Intermetallics, 2000, vol. 8, pp. 1329–37.

    Article  Google Scholar 

  26. O. Hunziker and W. Kurz: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3167–75.

    Article  Google Scholar 

  27. F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova, and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45–55.

    Google Scholar 

  28. J.E. Enderby and B.C. Dupree: Philos. Mag., 1997, vol. 35, pp. 791–93.

    Article  Google Scholar 

  29. H. Carreon: Nondestruct. Testing Eval., 2009, vol. 24, pp. 233–41.

    Article  Google Scholar 

  30. N.S. Stoloff: Int. Mater. Rev., 1989, vol. 34, pp. 153–84.

    Article  Google Scholar 

  31. G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitz, and A. Seifter: Thermochim. Acta, 2002, vol. 382, pp. 255–67.

    Article  Google Scholar 

  32. D.R. Lide: CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL, 2010, pp. 12–41

    Google Scholar 

  33. H.C. Yi, A. Varma, A.S. Rogachev, and P.J. Mcginn: Ind. Eng. Chem. Res., 1996, vol. 35, pp. 2982–85.

    Article  Google Scholar 

  34. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.

    Article  Google Scholar 

  35. W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  Google Scholar 

  36. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. ASM, 1969, vol. 62, pp. 155–79.

    Google Scholar 

  37. T.G. Langdon: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 249–60.

    Article  Google Scholar 

  38. F.C. Monkman and N.J. Grant: Proc. ASTM, 1956, vol. 56, pp. 593–620.

    Google Scholar 

  39. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  Google Scholar 

  40. A.E. Mikelson and Y.K. Karklin: J. Cryst. Growth, 1981, vol. 52, pp. 524–29.

    Article  Google Scholar 

  41. J. Delafond, A. Junqua, and J. Mimault: Phys. Status Solidi A, 1973, vol. 20, pp. 195–200.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51604172, 51690162, and U1560202), the United Innovation Program of Shanghai Commercial Aircraft Engine (AR911), the program of Youth Eastern Scholar (QD 2015035), and the CHENGUANG project from the Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wang.

Additional information

Manuscript submitted February 13, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xuan, W., Xie, X. et al. Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field. Metall Mater Trans A 48, 4193–4203 (2017). https://doi.org/10.1007/s11661-017-4173-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4173-z

Navigation