Skip to main content

Advertisement

Log in

Intrinsic Properties and Structure of AB2 Laves Phase ZrW2

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using the first-principle calculations along with the quasi-harmonic Debye model, we explore the structural, thermodynamic, mechanical, and electronic properties of ZrW2 intermetallic considering temperature or pressure effect. The computed equilibrium lattice parameter here is highly consistent with previous available results. The obtained formation enthalpy reveals that the ZrW2 is structurally stable in the pressure range of 0 to 100 GPa. The pressure and temperature dependences of V/V 0 ratio, constant volume specific heat capacity, thermal expansion coefficient, and Debye temperature of ZrW2 have been obtained. The calculated minimum thermal conductivity k min of ZrW2 is fairly small and shows anisotropy, which implies that ZrW2 has promising thermal-insulating application in engineering and may be competent for the thermal barrier materials. Moreover, from the results of elastic properties, we found the ZrW2 is mechanically stable and exhibits elastic anisotropy and the extent of elastic anisotropy increases with pressure. Additionally, ZrW2 shows ductile nature and its mechanical moduli all enhance as pressure increases, which is further confirmed by the findings from the electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Li, G. Sun, W. Woo, J. Gong, B. Chen, Y. Wang, Y.Q. Fu, C. Huang, L. Xie, and S. Peng: J. Nucl. Mater., 2014, vol. 446, pp. 134–41.

    Article  Google Scholar 

  2. G. Sundell, M. Thuvander, and H.O. Andrén: J. Nucl. Mater., 2015, vol. 456, pp. 409–14.

    Article  Google Scholar 

  3. R.N. Singh, N. Kumar, R. Kishore, S. Roychaudhury, T.K. Sinha, and B.P. Kashyap: J. Nucl. Mater., 2002, vol. 304, pp. 189–203.

    Article  Google Scholar 

  4. Y. Gou, Y. Li, Y. Liu, H. Chen, and S. Ying: Mater. Design, 2009, vol. 30, pp. 1231–35.

    Article  Google Scholar 

  5. Y.-I. Jung, M.-H. Lee, H.-G. Kim, J.-Y. Park, and Y.-H. Jeong: J. Alloy Compd., 2009, vol. 479, pp. 423–26.

    Article  Google Scholar 

  6. E. Polatidis, P. Frankel, J. Wei, M. Klaus, R.J. Comstock, A. Ambard, S. Lyon, R.A. Cottis, and M. Preuss: J. Nucl. Mater., 2013, vol. 432, pp. 102–12.

    Article  Google Scholar 

  7. K. Linga Murty and I. Charit: Prog. Nucl. Energy, 2006, vol. 48, pp. 325–59.

    Article  Google Scholar 

  8. M. Rieth, S.L. Dudarev, S.M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch et al.: J. Nucl. Mater., 2013, vol. 432, pp. 482–500.

    Article  Google Scholar 

  9. M. Fukuda, N.A.P. Kiran Kumar, T. Koyanagi, L.M. Garrison, L.L. Snead, Y. Katoh, and A. Hasegawa: J. Nucl. Mater., 2016, vol. 479, pp. 249–54.

    Article  Google Scholar 

  10. T. Ahlgren and L. Bukonte: J. Nucl. Mater., 2016, vol. 479, pp. 195–201.

    Article  Google Scholar 

  11. Z. Chen, W. Han, J. Yu, L. Kecskes, K. Zhu, and Q. Wei: J. Nucl. Mater., 2016, vol. 479, pp. 418–25.

    Article  Google Scholar 

  12. T. Hirai, F. Escourbiac, S. Carpentier-Chouchana, A. Durocher, A. Fedosov, L. Ferrand et al. : Phys. Scripta, 2014, vol. 2014, pp. 014006–014010.

    Article  Google Scholar 

  13. D. Horwat, E. Jimenez-Pique, J.F. Pierson, S. Migot, M. Dehmas, and M. Anglada: J. Phys. Chem. Solids, 2012, vol. 73, pp. 554–58.

    Article  Google Scholar 

  14. G.A. Dosovitskiy, S.V. Samoilenkov, A.R. Kaul, and D.P. Rodionov: Int. J. Thermophys., 2009, vol. 30, pp. 1931–37.

    Article  Google Scholar 

  15. Y.D. Kim, N.L. Oh, S.-T. Oh, and I.-H. Moon: Mater. Lett., 2001, vol. 51, pp. 420–24.

    Article  Google Scholar 

  16. H. Ren, X. Liu, and J. Ning: Mater. Sci. Eng. A, 2016, vol. 660, pp. 205–12.

    Article  Google Scholar 

  17. P. Luo, Z. Wang, C. Jiang, L. Mao, and Q. Li: Mater. Design, 2015, vol. 84, pp. 72–78.

    Article  Google Scholar 

  18. A. Coverdill, C. Delaney, A. Jennrich, H. Krier, and N.G. Glumac: J. Energy Mater., 2013, vol. 32, pp. 135–45.

    Article  Google Scholar 

  19. X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, and Z.W. Guan: J. Appl. Phys., 2013, vol. 113, pp. 0835081–08350810.

    Google Scholar 

  20. P. Zhou, Y. Peng, Y. Du, S. Wang, and G. Wen: Int. J. Refract. Met. H, 2015, vol. 50, pp. 274–81.

    Article  Google Scholar 

  21. H.-G. Kim, I.-H. Kim, B.-K. Choi, J.-Y. Park, Y.-H. Jeong, and K.-T. Kim: Corros. Sci., 2010, vol. 52, pp. 3162–67.

    Article  Google Scholar 

  22. Z. Blažina, Z. Ban: J. Less Common Met., 1983, vol. 90, pp. 223–31.

    Article  Google Scholar 

  23. E.M. Savitskii, A.M. Zakharov (1964) Zh. Neorg. Khim. 9:2261

    Google Scholar 

  24. E. Deligoz, H. Ozisik, and K. Colakoglu: Phil. Mag., 2014, vol. 94, pp. 1379–92.

    Article  Google Scholar 

  25. X.-Y. Yang, Y. Lu, and P. Zhang: J. Nucl. Mater., 2016, vol. 479, pp. 130–36.

    Article  Google Scholar 

  26. R. Arroyave, A. van de Walle, and Z.K. Liu: Acta Mater., 2006, vol. 54, pp. 473–82.

    Article  Google Scholar 

  27. G. Ghosh: Acta Mater., 2007, vol. 55, pp. 3347–74.

    Article  Google Scholar 

  28. B.-T. Wang, W.-D. Li, and P. Zhang: J. Nucl. Mater., 2012, vol. 420, pp. 501–07.

    Article  Google Scholar 

  29. S. Liu and Y. Zhan: Comp. Mater. Sci., 2015, vol. 103, pp. 111–15.

    Article  Google Scholar 

  30. G. Kresse and J. Furthmüller: Comp. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  Google Scholar 

  31. P.E. Blöchl: Phys. Rev. B, 1994, vol. 50, pp. 17953–17979.

    Article  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  Google Scholar 

  33. M. Blanco, E. Francisco, and V. Luana: Comput. Phys. Commun., 2004, vol. 158, pp. 57–72.

    Article  Google Scholar 

  34. B. Karki, L. Stixrude, S. Clark, M. Warren, G. Ackland, and J. Crain: Am. Mineral., 1997, vol. 82, pp. 51–60.

    Article  Google Scholar 

  35. C. Guo, C. Li, S. Shang, and Z. Du: Int. J. Mater. Res., 2014, vol. 105, pp. 1048–56.

    Article  Google Scholar 

  36. F. Birch: J. Geophys. Res. Solid Earth, 1978, vol. 83, pp. 1257–68.

    Article  Google Scholar 

  37. T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka: Phys. Rev. B, 2006, vol. 73, pp. 0643041–0643047.

    Article  Google Scholar 

  38. J. Li, M. Zhang, and X. Luo: J. Alloy Compd., 2013, vol. 556, pp. 214–20.

    Article  Google Scholar 

  39. W. Hu, B. Wang, X. Wang, H. Ge, L. Song, J. Wang, and Y. Hu: J. Thermal Anal. Calorim., 2014, vol. 117, pp. 27–38.

    Article  Google Scholar 

  40. Y. Duan, B. Huang, Y. Sun, M. Peng, and S. Zhou: J. Alloy Compd., 2014, vol. 590, pp. 50–60.

    Article  Google Scholar 

  41. H. Han: Chin. Phys. B, 2013, vol. 22, pp. 0771011–0771016

    Google Scholar 

  42. D.G. Cahill, S.K. Watson, and R.O. Pohl: Phys. Rev. B, 1992, vol. 46, pp. 6131–40.

    Article  Google Scholar 

  43. J. Callaway: Phys. Rev., 1959, vol. 113, pp. 1046–51.

    Article  Google Scholar 

  44. Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, and J. Meng: Phys. Rev. B, 2007, vol. 76, pp. 541151–5411515.

    Google Scholar 

  45. S. Liu, Y. Zhan, J. Wu, and X. Wei: J. Phys. Chem. Solids, 2015, vol. 86, pp. 177–85.

    Article  Google Scholar 

  46. D.G. Pettifor: Mater. Sci. Technol., 1992, vol. 8, pp. 345–49.

    Article  Google Scholar 

  47. R. Hill: Proc. Phys. Soc. A, 1952, vol. 65, pp. 349–54.

    Article  Google Scholar 

  48. X.-Q. Chen, H. Niu, D. Li, and Y. Li: Intermetallics, 2011, vol. 19, pp. 1275–81.

    Article  Google Scholar 

  49. X. Zhang, Z. Wang, and Y. Qiao: Acta Mater., 2011, vol. 59, pp. 5584–92.

    Article  Google Scholar 

  50. S. Pugh: Philos. Mag., 1954, vol. 45, pp. 823–43.

    Article  Google Scholar 

  51. H. Niu, X.-Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, and Y. Li: Scient. Rep., 2012, vol. 2, pp. 718–24.

    Google Scholar 

  52. S. Gehrsitz, H. Sigg, N. Herres, K. Bachem, K. Kohler, and F.K. Reinhart: Phys. Rev. B, 1999, vol. 60, pp. 11601–11610.

    Article  Google Scholar 

  53. H.Z. Yao, L.Z. Ouyang, and W.-Y. Ching: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3194–3204.

    Article  Google Scholar 

  54. S.I. Ranganathan and M. Ostoja-Starzewski: Phys. Rev. Lett., 2008, vol. 101, pp. 0555041–0555044.

    Article  Google Scholar 

  55. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson: J. Appl. Phys., 1998, vol.84, pp. 4891–4904.

    Article  Google Scholar 

  56. J.F. Nye: Physical Properties of Crystals, Oxford University Press, Oxford, United Kingdom, 1985.

    Google Scholar 

  57. T. Hong, T.J. Watson-Yang, X.Q. Guo, A.J. Freeman, T. Oguchi, and J.-H. Xu: Phys. Rev. B, 1991, vol. 43, pp. 1940–47.

    Article  Google Scholar 

  58. J. Du, B. Wen, R. Melnik, and Y. Kawazoe: Intermetallics, 2014, vol. 54, pp. 110–19.

    Article  Google Scholar 

Download references

Acknowledgments

This research work is jointly supported by the National Natural Science Foundation of China (Grant No. 51361002), the National Key Research Program of China (Grant No. 2016YFB0301402), and the Training Plan of High-Level Talents of Guangxi University (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Zhan.

Additional information

Manuscript submitted December 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhang, B. & Zhan, Y. Intrinsic Properties and Structure of AB2 Laves Phase ZrW2 . Metall Mater Trans A 48, 3082–3089 (2017). https://doi.org/10.1007/s11661-017-4054-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4054-5

Keywords

Navigation