Skip to main content
Log in

The Synthesis of Silicon Carbide in Rhombohedral Form with Different Chemicals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study describes the attempt at producing silicon carbide using a simpler and less costly method. Within the study, XRD, EDX, and FTIR analyses were performed to determine the structural properties of the product, and SEM analyses were used to identify its surface properties. The characteristics such as porosity and surface area were determined through BET analysis. The starting reagents were compared with the product using FTIR analysis, whereas the product was compared with a sample of SiC procured from a supplier who manufactures high-purity products through BET analysis. In EDX analysis, approximately 72 pct Si and 28 pct C were identified. The vibrational peaks of the synthesized product (characteristics Si-C bonds) were observed at around 1076 cm−1 (FTIR analysis). At the same time, the outcomes were compared with major publications in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Yang, Z.M. Lin and Li J.T: J Eur Ceram Soc 2009, vol. 9, pp. 175–80.

    Article  Google Scholar 

  2. B. Elyassi, T.W. Kim and Sahimi M: Mater Chem Phys 2009, vol. 118, pp. 259–63.

    Article  Google Scholar 

  3. H.B. Jin, J.T. Li, M.S. Cao and Agathopoulos S:. PowderTechnol 2009, vol. 196, pp. 229–32.

    Article  Google Scholar 

  4. Y. Goldberg, M.E. Levinshtein and Rumyantsev S.L. In:Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, SiGe. Levinshtein M.E., Rumyantsev S.L., Shur M.S. (Eds), Wiley, New York, 2001, pp. 93-148.

    Google Scholar 

  5. S.E. Saddow: Silicon Carbide Biotechnology a Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. First Edition, Elsevier, Waltham, USA, 2012, pp. 122-124.

    Google Scholar 

  6. A.S. Gusev, S.M. Ryndya, A.V. Zenkevich, N.I. Kargin, D.V. Averyanov and Grekov M.M.: Mod. Electron. Mater. 2015, vol. 1, pp. 120-125.

    Article  Google Scholar 

  7. X. Luo, W. Ma, Y. Zhou, D. Liu, B. Yang and Dai Y: Nano Scale Res Lett; 2010, vol. 5, pp. 252–6.

    Article  Google Scholar 

  8. W.M. Zhou, Y.F. Zhang, X.M. Niu and Min G.Q: Lecture Notes in Nanoscale Science and Technology, 3, Springer, New York, 2008, p. 17.

  9. H.J. Chio, H.K. Seong, J.C. Lee and Sung Y.M: J. Cryst. Growth 2004, vol. 269, pp. 472–8

    Article  Google Scholar 

  10. G.W. Ho, S.W. Wong, D.J. Kang and Welland M.E: Nanotechnology 2004, vol. 15, pp. 996–9

    Article  Google Scholar 

  11. H.J. Li, Z.J. Li, A.L. Meng, K.Z. Li, X.N. Zhang, Xu Y.P: J. Alloys Compd. 2003, vol. 352, pp. 279–82

    Article  Google Scholar 

  12. Y.J. Zhang, N.L. Wang, R.R. He, X.H. Chen and Zhu J: Solid State Commun. 2001, vol. 118, pp. 595–8

    Article  Google Scholar 

  13. BS Yigezu, MM Mahapatra, PK Jha: J. Miner. Mater. Charact. Eng. 2013, vol. 1, pp. 124-30.

    Google Scholar 

  14. G. Treffer, J. Neuhiiuser and Marx G: Mikrochim. Acta 125 (1997) 325-330

    Article  Google Scholar 

  15. B.M. Moshtaghioun, R. Poyato, F.L. Cumbrera, S. de Bernardi-Martin, A. Monshi, M.H. Abbasi, F. Karimzadeh and Dominguez-Rodriguez A: J. Europ. Ceramic Soc. 2012, vol. 32, 1787–94

    Article  Google Scholar 

  16. J. Hong, A. Goullet and Turban G: Thin Solid Films 2000, vol. 364, pp. 144−149.

    Article  Google Scholar 

  17. Y. Nur, H.M. Cengiz, M.W. Pitcher and Toppare L.K.: J. Mater. Sci. 2009, vol 44, pp. 2774–2779.

    Article  Google Scholar 

  18. P.A. Bianconi, S.J. Joray, B.L. Aldrich, J. Sumranjit, D.J. Duffy, D.P. Long, J.L. Lazorcik, L. Raboin, J.K. Kearns, S.L. Smulligan and Babyak J.M: J. Am. Chem. Soc., 2004, vol. 126, pp. 3191–202

    Article  Google Scholar 

  19. I. Karbovnyk, P. Savchyn, A. Huczko, M.C. Guidi, C. Mirri and Popov AI: Mater. Sci. Forum, 2015, vol. 821-823, pp. 261-4.

    Article  Google Scholar 

  20. R.G. Munro: J. Phys. Chem. Ref. Data, 1997, vol. 26, pp. 1195-203.

    Article  Google Scholar 

  21. R. Moene, L.F. Kramer, J. Schoonman, M. Makkee, J.A. Maulijn: Appl. Catal. A, 1997, vol. 162, pp. 181-91.

    Article  Google Scholar 

  22. P. Krawiec and Kaskel S: J. Solid State Chem. 2006, vol. 179, pp. 2281–9.

    Article  Google Scholar 

  23. M.B. Shiflett, H.C. Foley: Science 1999, vol. 285, pp. 1902-5.

    Article  Google Scholar 

Download references

Acknowledgment

This study was patented by Erciyes University Teknopark A.Ş.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. AFŞIN KARİPER.

Additional information

Manuscript submitted August 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KARİPER, İ.A. The Synthesis of Silicon Carbide in Rhombohedral Form with Different Chemicals. Metall Mater Trans A 48, 3108–3112 (2017). https://doi.org/10.1007/s11661-017-4050-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4050-9

Keywords

Navigation