Skip to main content
Log in

Warm Formability of 0.2 Pct C-1.5 Pct Si-5 Pct Mn Transformation-Induced Plasticity-Aided Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The warm stretch formability and flangeability of 0.2 pct C-1.5 pct Si-5 pct Mn transformation-induced plasticity-aided sheet steel with annealed martensite matrix were investigated for automotive applications. Both formabilities were enhanced by warm forming at peak temperatures of 423 K to 573 K and 423 K to 523 K (150 °C to 300 °C and 150 °C to 250 °C), respectively. The superior warm formabilities were mainly due to the stabilization of a large amount of retained austenite by warm forming and the consequent considerably suppressed void growth at the interface between the matrix and transformed martensite, despite there being large hole punching damage for the stretch flangeability. High peak temperatures for stretch formability and flangeability were associated with apparently increased M S of the retained austenite resulting from the increased mean normal stress on stretch forming and hole expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V.F. Zackay, E.R. Parker, D. Fahr, R. Bush, Trans. Am. Soc. Met. 60, 252–59 (1967)

    Google Scholar 

  2. O. Matsumura, Y. Sakuma, Y. Ishii, J. Zhao, ISIJ Int. 32, 1110–16 (1992)

    Article  Google Scholar 

  3. S. Hiwatashi, M. Takahashi, T. Katayama, M. Usuda, J. Jpn. Soc. Technol. Plast. 35, 1109–14 (1994)

    Google Scholar 

  4. K. Sugimoto, M. Kobayashi, A. Nagasaka, S. Hashimoto, ISIJ Int. 35, 1407–14 (1995)

    Article  Google Scholar 

  5. A. Nagasaka, K. Sugimoto, M. Kobayashi, S. Hashimoto, Tetsu-to-Hagane 83, 335–40 (1997). (in Japanese)

    Google Scholar 

  6. A. Nagasaka, K. Sugimoto, M. Kobayashi, H. Shirasawa, Tetsu-to-Hagane 84, 218–23 (1998). (in Japanese)

    Google Scholar 

  7. K. Sugimoto, A. Nagasaka, M. Kobayashi, S. Hashimoto, ISIJ Int. 39, 56–63 (1999)

    Article  Google Scholar 

  8. A. Karelova and C. Krempazky: Proc. Mater. Sci. Technol. (MS&T) 2007, Warrendale, PA, 2007, pp. 159–69.

  9. E. Emadoddin, H. Asmari, A.H. Zadeh, Int. J. Mater. Form. 2(Suppl. 1), 781–84 (2009)

    Article  Google Scholar 

  10. L. Wang, J.G. Speer, Metallogr. Microstruct. Anal. 2, 268–81 (2013)

    Article  Google Scholar 

  11. A.W. Hudgins: Colorado School of Mines, 2010, Ph.D. thesis, MT-SRC-010-008.

  12. K. Sugimoto, J. Sakaguchi, T. Iida, T. Kashima, ISIJ Int. 40, 920–26 (2000)

    Article  Google Scholar 

  13. K. Sugimoto, R. Kikuchi, S. Hashimoto, Steel Res. 73, 253–58 (2002)

    Article  Google Scholar 

  14. K. Sugimoto, M. Tsunezawa, T. Hojo, S. Ikeda, ISIJ Int. 44, 1608–14 (2004)

    Article  Google Scholar 

  15. K. Sugimoto, M. Murata, T. Muramatsu, Y. Mukai, ISIJ Int. 47, 1357–62 (2007)

    Article  Google Scholar 

  16. A. Grajcar, J. Achiev. Mater. Manuf. Eng. 20, 111–14 (2007)

    Google Scholar 

  17. J. Kobayashi, D.V. Pham, and K. Sugimoto: Steel Res. Int. (Special Ed. for ICTP 2011), 2011, pp. 598–603.

  18. J. Kobayashi, S. Song, K. Sugimoto, ISIJ Int. 52, 1124–29 (2012)

    Article  Google Scholar 

  19. J. Kobayashi, D.V. Pham, and K. Sugimoto: Steel Res. Int. (Special Ed. for Metal Forming 2012), 2012, pp. 883–86.

  20. D.V. Pham, J. Kobayashi, K. Sugimoto, ISIJ Int. 54, 1943–51 (2014)

    Article  Google Scholar 

  21. K. Sugimoto, A.K. Srivastava, Metallogr. Microstruct. Anal. 4, 344–54 (2015)

    Article  Google Scholar 

  22. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8, 219–37 (2004)

    Article  Google Scholar 

  23. D. Fan, N. Fonstein, H. Jun, AIST Trans. 13, 180–85 (2016)

    Google Scholar 

  24. R.L. Miller, Metall. Trans. 3, 905–12 (1972)

    Article  Google Scholar 

  25. T. Furukawa, Mater. Sci. Technol. 5, 465–70 (1989)

    Article  Google Scholar 

  26. T. Furukawa, H. Huang, O. Matsumura, Mater. Sci. Technol. 10, 964–70 (1994)

    Article  Google Scholar 

  27. H. Haung, O. Matsumura, T. Furukawa, Mater. Sci. Technol. 10, 621–26 (1994)

    Article  Google Scholar 

  28. H. Aydin, E. Essadiqi, I. Jung, S. Yue, Mat. Sci. Eng. A 564, 501–08 (2013)

    Article  Google Scholar 

  29. S. Lee, B.C. De Cooman, Metall. Mater. Trans. A 44A, 5018–24 (2013)

    Article  Google Scholar 

  30. W. Bleck and D. Raabe ed.: Proc. 2 nd Int. Conf. on High Manganese Steel (HMnS 2014), Aachen, Germany, 2014.

  31. J. Han, Y. Lee, Acta Mater. 67, 354–61 (2014)

    Article  Google Scholar 

  32. S. Chen, J. Hu, X. Zhang, H. Dong, W. Cao, J. Iron Steel Res. Int. 22, 1126–30 (2015)

    Article  Google Scholar 

  33. R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, D.K. Matlock, Steel Res. Int. 86, 1139–50 (2015)

    Article  Google Scholar 

  34. K. Sugimoto, K. Koyama, and H. Tanino: Proc. Mater. Sci. & Technol. (MS&T) 2015, AIST, Warrendale, PA, USA, 2015, pp. 859–68.

  35. S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E. De Moor, Mater. Design 97, 138–46 (2016)

    Article  Google Scholar 

  36. E. Seo, L. Cho, B.C. De Cooman, Acta Mater. 107, 354–65 (2016)

    Article  Google Scholar 

  37. B.C. De Cooman: Automotive Steels—Design, Metallurgy, Processing and Applications, R. Rana and S.B. Singh, eds., Woodhead Publishing Ltd., Cambridge, 2017, pp. 317–85.

  38. T. Hanamura, S. Torizuka, A. Sunahara, M. Imagunbai, H. Takechi, ISIJ Int. 51, 685–87 (2011)

    Article  Google Scholar 

  39. H. Tanino, M. Horita, K. Sugimoto, Metall. Mater. Trans. A 47, 2073–79 (2016)

    Article  Google Scholar 

  40. K. Sugimoto, H. Tanino, J. Kobayashi, Steel Res. Int. 86, 1151–60 (2015)

    Article  Google Scholar 

  41. O. Grassel, G. Frommeyer, Mater. Sci. Technol. 14, 1213–17 (1998)

    Article  Google Scholar 

  42. O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391–09 (2000)

    Article  Google Scholar 

  43. K. Sugimoto, H. Tanino, J. Kobayashi, Mater. Sci. Eng. A 688, 237–43 (2017)

    Article  Google Scholar 

  44. I. Tsukatani, S. Hashimoto, T. Inoue, ISIJ Int. 31, 992–1000 (1991)

    Article  Google Scholar 

  45. K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32, 1311–18 (1992)

    Article  Google Scholar 

  46. K. Sugimoto, M. Kobayashi, S. Hashimoto, Metall. Trans. A 23A, 3085–91 (1992)

    Article  Google Scholar 

  47. D.J. Dyson, B. Holmes, J. Iron Steel Inst. 208, 469–74 (1970)

    Google Scholar 

  48. Y. Tomota, Tetsu-to-Hagane 77, 315–25 (1991) (in Japanese)

    Google Scholar 

  49. O. Miyagawa, Iron and Steel Material (Asakura Publishing Co., Ltd., Tokyo, 1982), p. 119 (in Japanese)

    Google Scholar 

  50. J.B. Gilmour, G.R. Purdy, J.S. Kirkaldy, Metall. Trans. 3, 1455–64 (1972)

    Article  Google Scholar 

  51. G.R. Speich, V.A. Demarest, R.L. Miller, Metall. Trans. A 12A, 1419–28 (1981)

    Article  Google Scholar 

  52. S.V. Radcliffe, M. Schatz, Acta Metall. 10, 201–207 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-ichi Sugimoto.

Additional information

Manuscript submitted November 29, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, Ki., Hidaka, Sn., Tanino, H. et al. Warm Formability of 0.2 Pct C-1.5 Pct Si-5 Pct Mn Transformation-Induced Plasticity-Aided Steel. Metall Mater Trans A 48, 2237–2246 (2017). https://doi.org/10.1007/s11661-017-4046-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4046-5

Keywords

Navigation