Skip to main content
Log in

Application of Computational Thermodynamics to the Design of a Co-Ni-Based γ′-Strengthened Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A currently available commercial Calphad thermodynamic database was utilized to investigate its applicability to alloy design in the new class of Co-Ni-based γ′-strengthened high-temperature alloys. A simple primary design criterion was chosen: maximize the γ′ solvus temperature in the six-component Co-Ni-Al-Ti-W-Ta system while ensuring no formation of secondary, potentially deleterious phases. Secondary design considerations included the effects of alloying elements on equilibrium γ′ volume fraction and on solidus and liquidus temperatures. The identified composition, Co-30Ni-9Al-3Ti-7W-2Ta-0.1B (expressed in mole percent), representing a conservative estimate of the maximum allowable concentrations of alloying additions Al, Ti, W, and Ta, was subsequently produced and characterized. The experimentally measured γ′ solvus temperature of the new alloy was 1491 ± 3 K (1218 ± 3 °C), about 35 K (35 °C) above any previously reported two-phase γ−γ′ Co-(Ni)-based alloy. No secondary phases were observed in the alloy after annealing at temperatures between 1173 K and 1473 K (900 °C and 1200 °C). Additional alloy compositions with experimentally measured γ′ solvus temperatures in excess of 1533 K (1260 °C) were also identified employing the same basic approach. The efficacy of currently available thermodynamic databases in their application to Co-based γ′-strengthened superalloy development is discussed, including expanding design efforts to include additional alloying elements, as well as specific areas for improvement of future databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Mention of commercial products does not imply endorsement by NIST, nor does it imply that such products or services are necessarily the best available for the purpose.

  2. The alloy compositions throughout the text are designated by mole percent. For instance, an alloy described as 9Al-9W contains a mole percent of Al of 9 pct, a mole percent of W of 9 pct, and a balance of Co.

References

  1. C.S. Lee: Ph.D. Dissertation, The University of Arizona, 1971.

  2. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida: Science, 2006, vol. 312, pp. 90–91.

    Article  Google Scholar 

  3. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.

    Article  Google Scholar 

  4. N.L. Okamoto, T. Oohashi, H. Adachi, K. Kishida, H. Inui, P. Veyssièère: Phil. Mag., 2011, vol. 91, pp. 3667–84.

    Article  Google Scholar 

  5. K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, H. Inui: Philos. Mag., 2012, vol. 92, pp. 4011–27.

    Article  Google Scholar 

  6. L. Klein, A. Bauer, S. Neumeier, M. Göken, S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2027–34.

    Article  Google Scholar 

  7. H.-Y. Yan, V.A. Vorontsov, D. Dye: Corros. Sci., 2014, vol. 83, 382–95.

    Article  Google Scholar 

  8. Y.F. Cui, X. Zhang, G.L. Xu, W.J. Zhu, H.S. Liu, Z.P. Jin: J. Mater. Sci., 2011, vol. 46, pp. 2611–21.

    Article  Google Scholar 

  9. J. Zhu, M.S. Titus, T.M. Pollock: J. Phase Equil. Diff., 2014, vol. 35, pp. 595–611.

    Article  Google Scholar 

  10. S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida, S. Zaefferer: Intermetallics, 2009, vol. 17, pp. 1085–89.

    Article  Google Scholar 

  11. Y. Tsukamoto, S. Kobayashi, T. Takasugi: Mater. Sci. Forum, 2010, vol. 654–656, pp. 448–51.

    Article  Google Scholar 

  12. E.A. Lass, M.E. Williams, C.E. Campbell, K.-W. Moon, U.R. Kattner: J. Phase Equil. Diff., 2014, vol. 35, pp. 711–23.

    Article  Google Scholar 

  13. E.A. Lass, R.D. Grist, M.E. Williams: J. Phase Equil. Diff., 2016, vol. 37, pp. 387–401.

    Article  Google Scholar 

  14. Pandat: Computherm LLC, Madison, 2016.

  15. PanCobalt Thermodynamic Database, Computherm LLC, Madison, 2014.

  16. Thermocalc 2016a: Themo-Calc Software AB, Stockholm, Sweden, 2016.

  17. TCNI8 Ni-based superalloy database, Themo-Calc Software AB, Stockholm, 2015.

  18. H. Lukas, S.G. Fries, B. Sundman: Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  19. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier Scientific Publishing Company, Inc., New York, 1983, pp. 177–78.

    Google Scholar 

  20. F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, F. Symanzik: J. Alloys Compd., 2015, vol. 632, pp. 110–15.

    Article  Google Scholar 

  21. J.E. Saal, C. Wolverton: Acta Mater., 2013, vol. 61, pp. 2330–38.

    Article  Google Scholar 

  22. R.K. Rhein, P.C. Dodge, M.-H. Chen, M.S. Titus, T.M. Pollock, A. Van der Ven, Phys. Rev. B, 2015, vol. 92, pp. 174117:1–7.

  23. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–79.

    Article  Google Scholar 

  24. A.T. Dinsdale, A.V. Khvan, A. Watson: Mater. Sci. Technol., 2014, vol. 30, pp. 1715–18.

    Article  Google Scholar 

  25. M. Knop, P. Mulvey, F. Ismail, A. Radecka, K.M. Rahman, T.C. Lindley, B.A. Shollock, M.C. Hardy, M.P. Moody, T.L. Martin, P.A.J. Bagot, D. Dye: JOM, 2014, vol. 66, pp. 2495–2501.

    Article  Google Scholar 

  26. S.K. Makineni, B. Nithin, K. Chattopadhyay: Acta Mater., 2015, vol. 85, pp. 85–94.

    Article  Google Scholar 

  27. S. Neumeier, L.P. Freund, M. Göken: Scripta Mater., 2015, vol. 109, pp. 104–17.

    Article  Google Scholar 

  28. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, H. Inui: J. Alloys Compd., 2010, vol. 508, pp. 71–78.

    Article  Google Scholar 

  29. A. Bauer, S. Neumeier, F. Pyczak, M. Göken: Scripta Mater., 2010, vol. 63, pp. 1197–1200.

    Article  Google Scholar 

  30. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, K. Ishida: Intermetallics, 2013, vol. 32, pp. 274–83.

    Article  Google Scholar 

  31. H.-Y. Yan, V.A. Vorontsov, D. Dye: Intermetallics, 2014, vol. 48, pp. 44–53.

    Article  Google Scholar 

  32. K.V. Vamsi, S. Karthikeyan: Superalloys 2012, 2012, pp. 521–30.

  33. I. Lopez-Galilea, C. Zenk, S. Neumeier, S. Huth, W. Theisen, M. Göken: Adv. Eng. Mater., 2014, vol. 17, pp. 741–47.

    Article  Google Scholar 

  34. S. Kobayashi, Y. Tsukamoto, T. Takasugi: Intermetallics, 2011, vol. 19, pp. 1908–12.

    Article  Google Scholar 

  35. F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, Q. Feng: Mater. Lett., 2013, vol. 112, pp. 215–18.

    Article  Google Scholar 

  36. F. Xue, H.J. Zhou, Q. Feng: JOM, 2014, vol. 66, pp. 2486–94.

    Article  Google Scholar 

  37. R.W. Jackson, M.S. Titus, M.R. Begley, T.M. Pollock: Surf. Coat. Technol., 2016, vol. 289, pp. 61–68.

    Article  Google Scholar 

  38. H.J. Zhou, W.D. Li, F. Xue, L. Zhang, X.H. Qu, Q. Feng: Superalloys 2016, 2016, pp. 981–90.

  39. E.A. Lass: Co-(Ni)-Al-W alloy DSC measured temperatures: Curie, solvus, solidus, and liquidus temperatures. materialsdata.nist.gov, http://hdl.handle.net/11256/824, Accessed 1 October 2016.

  40. E.A. Lass, D.J. Sauza, D.C. Dunand, D.N. Seidman: unpublished research, 2016.

  41. A. Suzuki, T.M. Pollock: Acta Mater., 2008, vol. 56, pp. 1288–97.

    Article  Google Scholar 

  42. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, M. Göken: Mater. Sci. Eng. A, 2012, vol. 550, pp. 333–41.

    Article  Google Scholar 

  43. S. Meher, R. Banerjee: Intermetallics, 2014, vol. 49, pp. 138–42.

    Article  Google Scholar 

  44. S.K. Makineni, B. Nithin, D. Palanisamy, K. Chattopadhyay: J. Mater. Sci., 2016, vol. 51, pp. 7843–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Lass.

Additional information

Manuscript submitted December 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lass, E.A. Application of Computational Thermodynamics to the Design of a Co-Ni-Based γ′-Strengthened Superalloy. Metall Mater Trans A 48, 2443–2459 (2017). https://doi.org/10.1007/s11661-017-4040-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4040-y

Keywords

Navigation