Skip to main content

Advertisement

Log in

Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100−x Nb x Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, (Zr55Cu30Al10Ni5)100−x Nb(x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] R.D. Conner, R.B. Dandliker, V. Scruggs, and W.L. Johnson: Int. J. Impact Eng., 2000, vol. 24, pp. 435-44.

    Article  Google Scholar 

  2. [2] X. Hui, J. Yu, M. Wang, W. Dong, and G. Chen: Intermetallics, 2006, vol. 14, pp. 931–35.

    Article  Google Scholar 

  3. [3] D. Dargoi, E. Ustundag, B. Clausen, and M.A. Bourke: Scr. Mater., 2001, vol. 45, pp. 245-52.

    Article  Google Scholar 

  4. [4] F. Abdeljawad, M. Fontus, and M. Haataja: J. Appl. Phys., 2011, vol. 98, pp. 03190-1-03190-3.

    Google Scholar 

  5. [5] S.T. Deng and H. Diao: Scr. Mater., 2011, vol. 64, pp. 85–88.

    Article  Google Scholar 

  6. [6] H. Li and K. Li: Sci. Eng. A, 2006, vol. 429, pp. 115–23.

    Article  Google Scholar 

  7. [7] J. Qiao and Y. Zhang: Intermetallics, 2011, vol. 19, pp. 149-53.

    Article  Google Scholar 

  8. [8] B.Y. Zhang, X. Chen, and S. Wang: Mater. Lett., 2013, vol. 93, pp. 210–14.

    Article  Google Scholar 

  9. [9] H. Zhang, H. Li, and A.M. Wang: Intermetallics, 2009, vol. 17, pp 1070–77.

    Article  Google Scholar 

  10. [10] G.Y. Sun and G. Chen: Intermetallics, 2007, vol. 15, pp. 632-34.

    Article  Google Scholar 

  11. [11] G. Wang, D.M. Chen, J. Shen, Z.h. Stanchurski, Q.H. Qin, J.F Sun, and B.D. Zhou: J. Non-Cryst. Solids, 2006, vol. 352, pp. 3872-78.

    Article  Google Scholar 

  12. [12] D. Singh and R.K. Mandal: J. Alloy. Compd., 2011, vol. 509, pp. 8657–63.

    Article  Google Scholar 

  13. [13] L. Liu and Q. Chen: Mater. Sci. Eng. A, 2007, vol. 449, pp. 949-53.

    Article  Google Scholar 

  14. [14] Q.S. Zhang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Mater. Sci. Eng. A, 2003, vol. 360, pp. 280-84.

    Article  Google Scholar 

  15. [15] K.Q. Qiu and Y.L. Ren: J. Miner. Mat. Charact. Eng., 2004, vol. 3, pp. 91-98.

    Google Scholar 

  16. [16] N. Khademian and R. Gholamipour: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3079–84.

    Article  Google Scholar 

  17. [17] M.L. Wang, G.L. Chen, X. Hui, Y. Zhang, and Z.Y. Bai: Intermetallics, 2007, vol. 15, pp. 1309-15.

    Article  Google Scholar 

  18. [27] K.Q. Qiu, A.M. Wang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Intermetallics, 2002, vol. 10, pp. 1283-88.

    Article  Google Scholar 

  19. [25] N. Khademian and R. Gholamipour: J. Non-Cryst. Solids, 2013, vol. 365, pp. 75–84.

    Article  Google Scholar 

  20. J. Fei, C. Guang, W. Zhihua, C. Yang, C. Jialin, and C. Guoliang: Rare. Metal. Mater. Eng., 2011, vol. 40, pp. 206-08.

    Article  Google Scholar 

  21. [37] A. Inoue and A. Takeuchi: Acta Mater., 2011, Vol. 59. 2243–2267.

    Article  Google Scholar 

  22. [28] A.R. Miedemax, F.R. Boerxx, and R. Boom: Calphad, 1977, vol. 1, pp. 341-59.

    Article  Google Scholar 

  23. [19] H. Wang, H.F. Zhang, and Z.Q. Hu: Mater. Manuf. Process, 2007, vol. 22, pp. 687-91.

    Article  Google Scholar 

  24. [20] H. G. Jeong, K. Hiraga, M. Mabuchi, and K. Higashi: Acta Mater., 1998, vol. 46, pp. 6009-20.

    Article  Google Scholar 

  25. [35] M. Wang, H. Xioding and G. Chen: Matter. Sci. Forum., 2005, vol. 475-479, pp. 3389-3392.

    Article  Google Scholar 

  26. Z.K. Li, H.M. Fu, P.F. Sha, Z.W. Zhu, A.M. Wang, H. Li, H.W. Zhang, H.F. Zhang and Z.Q. Hu: Sci. Rep., 2015, vol. 5. 8967-73.

    Article  Google Scholar 

  27. [33] S. Suresh and A. Mortensen: In. Mater. Rev., 1997, vol. 42, pp. 85-116.

    Article  Google Scholar 

  28. [30] D. Dragoi, B. Clausen, and M.A. Bourke: Scr. Mater., 2001, vol. 45, pp. 245-52.

    Article  Google Scholar 

  29. [22] K. Qiu, Z.Y. Suo, Y.L Ren, and B. Yu: J. Mater. Res., 2007, vol. 22, pp. 551-54.

    Article  Google Scholar 

  30. [21] J. Gu, S. Ni, X. Liao, and S. Guo: Mater. Sci. Eng. A, 2014, vol. 602, pp. 68–76.

    Article  Google Scholar 

  31. [23] C. Lia and S. Kou: Prog. Nat. Sci. Mater. Int., 2012, vol. 22, pp. 21–25.

    Article  Google Scholar 

  32. [24] H.K. Lim, E.S. Park, and J.S. Park: J. Mater. Sci., 2005, vol. 40, pp. 6127–30.

    Article  Google Scholar 

  33. [34] S. Lee, M. Huh, E. Fleury, and J. Lee: Acta Mater., 2006, vol. 54, pp. 349–55.

    Article  Google Scholar 

  34. [29] W. Ruigang, P. Wei, J. Mengning, C. Jian, and L. Yongming: Mater. Sci. Eng. B, 2002, vol. 90, pp. 261-68.

    Article  Google Scholar 

  35. [31] C.S. Huang, O.G. Mcgee, and M.J. Chang: Compos. Struct., 2011, vol. 93, pp. 1747-65.

    Article  Google Scholar 

  36. [32] L. Lu, M. Chekroun, O. Abraham, V. Maupin, and G. Villain: NDT and E Int., 2011, vol. 44, pp. 169-77.

    Article  Google Scholar 

  37. [26] J.H. Chen, Y. Chen, M.Q. Jiang, X.W. Chen, H.M. Fu, H.F. Zhang, and L.H. Dal: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5397-5408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Gholamipour.

Additional information

Manuscript submitted February 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodan, M., Gholamipour, R., Mirdamadi, S. et al. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100−x Nb x Composite. Metall Mater Trans A 48, 2496–2503 (2017). https://doi.org/10.1007/s11661-017-4003-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4003-3

Keywords

Navigation