Skip to main content
Log in

Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure (i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E Ma: Scr. Mater., 2003, vol. 49, pp. 663–68.

    Article  Google Scholar 

  2. N. Balasubramanian and T. G. Langdon: Metall. Mater. Trans. A, 2016, pp. 1–12.

  3. P. G. Sanders, C. J. Youngdahl, and J. R. Weertman: Mater. Sci. Eng. A, 1997, vol. 234, pp. 77–82.

    Article  Google Scholar 

  4. A. Hohenwarter and R. Pippan: Phil Trans R Soc A, 2015, vol. 373, p. 20140366.

    Article  Google Scholar 

  5. R. Song, D. Ponge, D. Raabe, J. G. Speer, and D. K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  6. Zonghoon Lee, Velimir Radmilovic, Byungmin Ahn, Enrique J. Lavernia, and Steven R. Nutt: Metall. Mater. Trans. A, 2009, vol. 41, pp. 795–801.

    Google Scholar 

  7. Zhe Zhang, Dmitry Orlov, Sanjay Kumar Vajpai, Bo , and Kei : Adv. Eng. Mater., 2015, vol. 17, pp. 791–95.

    Article  Google Scholar 

  8. Tatsuya Sekiguchi, Keita Ono, Hiroshi Fujiwara, and Kei Ameyama: Mater. Trans., 2010, vol. 51, pp. 39–45.

    Article  Google Scholar 

  9. Choncharoen Sawangrat, Shota Kato, Dmitry Orlov, and Kei Ameyama: J. Mater. Sci., 2014, vol. 49, pp. 6579–85.

    Article  Google Scholar 

  10. Shimojo K, Okada S: J. Powder Metall. Min., 2014, vol. 03, 122.

    Google Scholar 

  11. SK Vajpai, M Ota, T Watanabe, R Maeda, T Sekiguchi, T Kusaka, K Ameyama: Metall. Mater. Trans. A, 2014; 46:903–14.

    Article  Google Scholar 

  12. G.E. Dieter: Mechanical Metallurgy, 1988, SI Metric Edition, McGraw-Hill, ISBN 0-07-100406-8, 2005, pp. 159–163.

  13. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K. H. Stiasny: J. Mater. Process. Technol., 2001, vol. 118, pp. 350–55.

    Article  Google Scholar 

  14. A. Medvedeva, J. Bergström, S. Gunnarsson, and J. Andersson: Mater. Sci. Eng. A, 2009, vol. 523, pp. 39–46.

    Article  Google Scholar 

  15. O. E. Okorafor: Mater. Sci. Technol., 1987, vol. 3, pp. 118–24.

    Article  Google Scholar 

  16. M. Rosso, D. Ugues, and M. Actis Grande: J. Achiev. Mater. Manuf. Eng., 2006, vol. 18: 175–178.

    Google Scholar 

  17. K. Zumsande, A. Weddeling, E. Hryha, S. Huth, L. Nyborg, S. Weber, N. Krasokha, and W. Theisen: Mater. Charact., 2012, vol. 71, pp. 66–76.

    Article  Google Scholar 

  18. L. Arnberg and A. Karlsson: Int. J. Powder Metall. 1988, vol. 24, pp. 107–12.

    Google Scholar 

  19. Massimo Pellizzari, Anna Fedrizzi, and Mario Zadra: Materials, 2016, vol. 9, p. 482.

    Article  Google Scholar 

  20. M. Pellizzari, A. Fedrizzi, and M. Zadra: Mater. Des., 2011, vol. 32, pp. 1796–1805.

    Article  Google Scholar 

  21. H. Zoz, K. Ameyama, S. Umekawa, H. Ren, and V. D. Jaramillo: Metall, 2003, vol. 57, pp. 640–48.

    Google Scholar 

  22. Z. A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–77.

    Article  Google Scholar 

  23. Xavier Boulnat, Damien Fabregue, Michel Perez, Marie-Hélène Mathon, and Yann de Carlan: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2461–65.

    Article  Google Scholar 

  24. L. Lutterotti, S. Matthies, H.-R. Wenk, A. S. Schultz, and J. W. Richardson Jr: J. Appl. Phys., 1997, vol. 81, pp. 594–600.

    Article  Google Scholar 

  25. E. G Herbert, G. M Pharr, W. C Oliver, B. N Lucas, and J. L Hay: Thin Solid Films, 2001, vol. 398–399, pp. 331–35.

    Article  Google Scholar 

  26. Sinisa Dj Mesarovic and Norman A. Fleck: Proc. R. Soc. Lond. Math. Phys. Eng. Sci., 1999, vol. 455, pp. 2707–28.

    Article  Google Scholar 

  27. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  Google Scholar 

  28. M. Tokita: in Handb. Adv. Ceram. Second Ed., Shigeyuki S., ed., Academic Press, Oxford, 2013, pp. 1149–77.

  29. Yuuji Kimura, Hideyuki Hidaka, and Setsuo Takaki: Mater. Trans. JIM, 1999, vol. 40, pp. 1149–57.

    Article  Google Scholar 

  30. Toshihiro Hanamura and Hai Qiu: in Anal. Fract. Toughness Mech. Ultra-Fine-Grained Steels, Springer Japan, 2014, pp. 9–25.

    Google Scholar 

  31. J. J. Horn, R. I. Stephens, and T. Prucher: Powder Metall., 1998, vol. 41, pp. 205–10.

    Article  Google Scholar 

  32. Debalay Chakrabarti, Martin Strangwood, and Claire Davis: Metall. Mater. Trans. A, 2009, vol. 40, pp. 780–95.

    Article  Google Scholar 

  33. H. Drar and A. Bergmark: Fatigue Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1319–30.

    Article  Google Scholar 

  34. M. Pellizzari, M. Zadra, and A. Fedrizzi: Mater. Manuf. Process., 2009, vol. 24, pp. 873–78.

    Article  Google Scholar 

  35. Byungmin Ahn, Enrique J. Lavernia, and Steven R. Nutt: J. Mater. Sci., 2008, vol. 43, p. 7403.

    Article  Google Scholar 

  36. Quang Hien Bui: J. Mater. Sci., 2011, vol. 47, pp. 1902–9.

    Google Scholar 

  37. Xiaoxu Huang, Niels Hansen, and Nobuhiro Tsuji: Science, 2006, vol. 312, pp. 249–51.

    Article  Google Scholar 

  38. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev: Mater. Sci. Eng. A, 2012, vol. 540, pp. 1–12.

    Article  Google Scholar 

  39. A. Fillon, X. Sauvage, A. Pougis, O. Bouaziz, D. Barbier, R. Arruffat, and L. S. Toth: J. Mater. Sci., 2012, vol. 47, pp. 7939–45.

    Article  Google Scholar 

  40. R. Pippan and A. Hohenwarter: Mater. Res. Lett., 2016, vol. 4, pp. 127–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz Deirmina.

Additional information

Manuscript submitted September 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deirmina, F., Pellizzari, M. & Federici, M. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering. Metall Mater Trans A 48, 1910–1920 (2017). https://doi.org/10.1007/s11661-017-3957-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3957-5

Keywords

Navigation