Skip to main content
Log in

Reduction of Intergranular Cracking Susceptibility by Precipitation Control in 2.25Cr Heat-Resistant Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This research is performed to decrease reheat cracking susceptibility in the T/P23 heat-resistant steels (2.25Cr1.5WVNbTi), in other words, to reduce phosphorus and sulfur segregation concentration at the prior austenite grain boundary/carbide interfaces (GCIs) and the carbide-free prior austenite grain boundaries (carbide-free PAGBs) causing intergranular cracking. The increase of bulk vanadium content reduces the amount of M23C6 carbides consuming carbon atoms which can repulse phosphorus and sulfur from interfaces, but promotes the precipitation reaction of V-rich MX carbo-nitrides. Such a precipitation reaction results in the lower segregation concentration of phosphorus or no sulfur at the GCIs and the carbide-free PAGBs. This is because the carbon atoms remaining after precipitation reaction segregates to the interfaces and repels phosphorus and sulfur. Also, tungsten segregation can increase the cohesive grain boundary strength as one of the grain boundary strengtheners. Consequently, the lower segregation concentration of the impurities and the segregation of tungsten atoms lower the intergranular cracking susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Abe, T.U. Kern, and R. Viswanathan: Creep Resistant Steels, Woodhead Publishing Ltd, Cambridge, 2008.

    Book  Google Scholar 

  2. A. Dhooge, and J. Vekeman: Weld. World, 2005, vol. 49, pp. 75-93.

    Article  Google Scholar 

  3. C.A. Hippsley, J.F. Knott, and B.C. Edwards: Acta Metall., 1980, vol. 28, pp. 869–85.

    Article  Google Scholar 

  4. R. Raj, and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  5. T.J. Chuang, K.I. Kagawa, J.R. Rice, and L.B. Sills: Acta Metall., 1979, vol. 27, pp. 265–84.

    Article  Google Scholar 

  6. J. Shin, and C.J. McMahon Jr: Acta Metall., 1984, vol. 32, pp. 1535–52.

    Article  Google Scholar 

  7. D. Bika, J.A. Pfaendtner, M. Menyhard, and C.J. McMahon Jr: Acta Metall Mater., 1995, vol. 43, pp. 1895–908.

    Article  Google Scholar 

  8. C.A. Hippsley, J.F. Knott, and B.C. Edwards: Acta Metall., 1982, vol. 30, pp. 641–54.

    Article  Google Scholar 

  9. W.T. Geng, A.J. Freeman, and G.B. Olson: Solid State Com., 2001, vol.119, pp. 585–90.

    Article  Google Scholar 

  10. D.Y. Lee, E.V. Barrera, J.P. Stark, and H.L. Marcus: Metall. Trans. A., 1984, vol.15, pp.1415–30.

    Article  Google Scholar 

  11. N.H. Heo, J.C. Chang, K.B. Yoo, J.K. Lee, and J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2678–85.

    Article  Google Scholar 

  12. N.H. Heo, and S.–J. Kim: Mater. Sci. Eng. A., 2012, vol. 556, pp. 533–39.

    Article  Google Scholar 

  13. H.J. Sung, N.H. Heo, and S.-J. Kim: Metall. Mater. Trans A., 2016, vol. 47, pp. 1975–83.

    Article  Google Scholar 

  14. H.J. Grabke: Steel. Res., 1986, vol. 57, pp. 178–85.

    Article  Google Scholar 

  15. Y.Q. Weng, and C.J. McMahon Jr: Mater Sci. Tech., 1987, vol. 3, pp. 207–16.

    Article  Google Scholar 

  16. S.G. Michael, and E.F. Morris: Calphad, 2001, vol. 25, pp. 207–16.

    Article  Google Scholar 

  17. J. Čermák, J. Růžičková, and A. Pokorná: Scripta Mater., 1996, vol. 35, 441–16.

    Article  Google Scholar 

  18. V. Magula, D. Grman, and J. Patscheider: Scripta Mater., 1997, vol. 37, pp. 1811–19.

    Article  Google Scholar 

  19. M.P. Seah: Acta Metall., 1980, vol. 28, pp. 995–62.

    Article  Google Scholar 

  20. S. Zamberger, T. Wojcik, J. Klarner, G. Klösch, H. Schifferl, and E. Kozeschnik: Steel Res. Int., 2013, vol. 84, pp. 20–30.

    Article  Google Scholar 

  21. S. Suzuki, S. Tanii, K. Abiko, and H. Kimura: Metall. Trans. A., 1987, vol. 18, pp. 1109–15.

    Article  Google Scholar 

  22. N.H. Heo: Scripta Mater., 2004, vol. 51, pp. 339–42.

    Article  Google Scholar 

  23. M. Taneike, F. Abe, and K. Sawada: Nature, 2003, vol. 424, pp. 294–296.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Korea Institute of Energy Technology Evaluation and Planning (Project No: 20152010103430) for the financial support and Mrs. Jung Hyun Yoon in Korea Institute of Science and Technology for the AES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Hoe Heo.

Additional information

Manuscript submitted September 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, H.J., Heo, N.H. & Kim, SJ. Reduction of Intergranular Cracking Susceptibility by Precipitation Control in 2.25Cr Heat-Resistant Steels. Metall Mater Trans A 48, 1459–1465 (2017). https://doi.org/10.1007/s11661-016-3936-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3936-2

Keywords

Navigation