Skip to main content

Advertisement

Log in

Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-carbon steel workpieces are deformed by equal-channel angular pressing at 293 K (20 °C) up to an equivalent strain of ~12 using route B c, which results in the bulk ultrafine-grained (UFG) structure with high dislocation density and partial dissolution of cementite. The yield strength (YS) is enhanced from 208 (as-received) to 872 MPa and the tensile strength is increased from 362 to 996 MPa, but the material loses total elongation (TE) from 36.2 to 2.9 pct. Cold rolling of equal-channel angular pressed steel produces the refined structure of grain size 0.11 μm. The YS increases further to 924 MPa with a marginal gain in ductility due to the reappearance of the γ fiber component. Flash annealing the samples, which were equal-channel angular pressed followed by cold rolling, at 873 K (600 °C) results in 27 pct of micron-sized (9 µm) ferrite grains in submicron-sized (<1 µm) matrix with a reduced defect density and small amount of precipitation of cementite. TE increases from 2.9 to 23.3 pct. The material retains a YS of 484 MPa and tensile strength of 517 MPa, which are higher than those of the as-received material. The UFG grains are failed by cleavage, but the micron-sized grains display ductile fracture. The ductility of the flash-annealed material is recovered significantly due to bimodal grain size distribution in ferrite and the development of a good amount of γ fiber texture components. The major contribution toward recovery of ductility comes from the bimodal grain size distribution in ferrite rather the precipitation of cementite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  Google Scholar 

  2. A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo: Scripta Mater., 2003, vol. 49, pp. 651–56.

    Article  Google Scholar 

  3. K.T. Park and D.H. Shin: Mater. Sci. Eng. A, 2002, vol. 334, pp. 79–86.

    Article  Google Scholar 

  4. C.C. Koch: Scripta Mater., 2003, vol. 49, pp. 657–62.

    Article  Google Scholar 

  5. W.D. Callister, Jr.: Materials Science and Engineering—An Introduction, 6th ed., John Wiley & Sons, Inc., New York, NY, 2004, pp. 346–84.

    Google Scholar 

  6. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881–98.

    Article  Google Scholar 

  7. L.S. Toth and C. Gu: Mater. Charact., 2014, vol. 92, pp. 1–14.

    Article  Google Scholar 

  8. J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 312–15.

    Article  Google Scholar 

  9. D.H. Shin, J. Kim, and K.T. Park: Met. Mater. Int., 2001, vol. 7 (5), pp. 431–35.

    Article  Google Scholar 

  10. L. Kraus, J. Zrnik, M. Fujda, and M. Cieslar: Grain Refinement of Low Carbon Steel by ECAP Severe Plastic Deformation, Nanocon 2011, Brno, Czech Republic, European Union, 2011.

    Google Scholar 

  11. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–68.

    Article  Google Scholar 

  12. G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin: Mater. Sci. Eng. A, 2013, vol. 581, pp. 104–07.

    Article  Google Scholar 

  13. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1525–34.

    Article  Google Scholar 

  14. L.G. Kornelyuk, A.Y. Lozovoi, and I.M. Razumovskii: Phil. Mag. A, 1998, vol. 77 (2), pp. 465–74.

  15. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Mater. Sci. Forum, 2012, vol. 710, pp. 241–46.

    Article  Google Scholar 

  16. S. Patra, Sk.Md. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

  17. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  18. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.

    Article  Google Scholar 

  19. Y.M. Wang, M.W. Chen, F. Zhou, and E. Ma: Nature (London), 2002, vol. 419, pp. 912–14.

    Article  Google Scholar 

  20. J.R. Weertman: in Nanostructured Materials: Processing, Properties and Applications, C.C. Koch, ed., William Andrews Publishing, Norwich, 2002, p. 397.

  21. F. Khodabakhshi and M. Kazeminezhad: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5212–18.

    Article  Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1988, pp. 185–240.

    Google Scholar 

  23. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  24. Y.M. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699–1709.

    Article  Google Scholar 

  25. E. Ma: JOM, 2006, pp. 5849–53.

  26. T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, and F.C. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2798–2801.

    Article  Google Scholar 

  27. H.W. Park and J. Yanagimoto: Mater. Sci. Eng. A, 2013, vol. 567 pp. 29–37.

    Article  Google Scholar 

  28. A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2041–52.

    Article  Google Scholar 

  29. E. Ma: Scripta Mater., 2003, vol. 49, pp. 663–68.

    Article  Google Scholar 

  30. J.J. Zheng, C.S. Li, S. He, B. Cai, and Y.L. Song: Mater. Sci. Eng. A, 2016, vol. 670, pp. 275–79.

    Article  Google Scholar 

  31. N. Phoumiphon, R. Othman, and A.B. Ismail: Procedia Chem., 2016, vol. 19, pp. 822–27.

    Article  Google Scholar 

  32. D.H. Shin and K.T. Park: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 299–302.

    Article  Google Scholar 

  33. S.M. Hosseini, M. Alishahi, A. Najafizadeh, and A. Kermanpur: Mater. Lett., 2012, vol. 74, pp. 206–08.

    Article  Google Scholar 

  34. B.R. Kumar, S. Sharma, and B. Mahato: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2209–16.

    Article  Google Scholar 

  35. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.

    Article  Google Scholar 

  36. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1989–97.

    Article  Google Scholar 

  37. G.R. Stibitz: Phys. Rev., 1936, vol. 49, p. 859.

    Article  Google Scholar 

  38. S.S. Hazra, A.A. Gazder, and E.V. Pereloma: Mater. Sci. Eng. A, 2009, vol. 524, pp. 158–67.

    Article  Google Scholar 

  39. A. Borbely, J.H. Driver, and T. Ungar: Acta Mater., 2000, vol. 48, pp. 2005–16.

    Article  Google Scholar 

  40. H.P. Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley, New York, NY, 1954, pp. 491–94.

    Google Scholar 

  41. G.K. Williamson and R.E. Smallman: Phil. Mag., 1956, vol. 1, pp. 34–46.

    Article  Google Scholar 

  42. R.E. Smallman and K.H. Westmacott: Phil. Mag., 1957, vol. 2, pp. 669–83.

    Article  Google Scholar 

  43. K. Zhang, I.V. Alexandrov, A.R. Kilmametovz, R.Z. Valievz, and K. Luy: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 3008–15.

    Article  Google Scholar 

  44. S.S. Hazra, A.A. Gazder, A. Carman, and E.V. Pereloma: Min. Met. Mater. Soc. ASM Int., 2010, pp. 1334–48.

  45. D.H. Shin, B.C. Kim, Y.S. Kim, and K.T. Park: Acta Mater., 2000, vol. 48, pp. 2247–55.

    Article  Google Scholar 

  46. D.H. Shin, I. Kim, J. Kim, and K.T. Park: Acta Mater., 2001, vol. 49, pp. 1285–92.

    Article  Google Scholar 

  47. R. Singh, S. Kumar, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Int. J. Met. Eng., 2013, vol. 2 (1), pp. 62–68.

    Google Scholar 

  48. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Scripta Mater., 2005, vol. 53, pp. 1357–61.

    Article  Google Scholar 

  49. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Proc. 30th Risø Int. Symp on Materials Science: Nanostructured Metals—Fundamentals to Applications, J.-C. Grivel et al., eds., Risø National Laboratory for Sustainable Energy, T.U.D., Roskilde, Denmark, Sept. 7–11, 2009, pp. 245–52.

  50. Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 291, pp. 46–53.

    Article  Google Scholar 

  51. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1803–17.

    Article  Google Scholar 

  52. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 178–85.

    Article  Google Scholar 

  53. T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan: Acta Mater., 2005, vol. 53, pp. 393–402.

    Article  Google Scholar 

  54. H. Jazaeri, F.J. Humphreys, and S.P. Bate: Mater. Sci. Forum, 2006, vol. 153, pp. 519–21.

    Google Scholar 

  55. P.B. Prangnell, Y. Huang, M. Berta, and P.J. Apps: Proc. Int. Symp. on Fundamentals of Deformation and Annealing, P.B. Prangnell and P.S. Bate, eds., Trans Tech, Zurich, 2007.

  56. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50.

    Article  Google Scholar 

  57. Yuntian Zhu and Terence G. Langdon: JOM, 2004, vol. 56, pp. 58–63.

    Article  Google Scholar 

  58. F. Khodabakhshi and M. Kazeminezhad: Mater. Des., 2011, vol. 32, pp. 3280–86.

    Article  Google Scholar 

  59. Kyung-Tae Park, Yong-Seog Kim, Jung Guk Lee, and Dong Hyuk Shin: Mater. Sci. Eng. A, 2000, vol. 293, pp. 165–72.

    Article  Google Scholar 

  60. J. Hodowany, G. Ravichandran, A.J. Rosakis, and P. Rosakis: Exp. Mech., 2000, vol. 40, pp. 113–23.

    Article  Google Scholar 

  61. G. Purcek, O. Saray, M.I. Nagimov, A.A. Nazarov, I.M. Safarov, V.N. Danilenko, O.R. Valiakhmetov, and R.R. Mulyukov: Phil. Mag., 2012, vol. 92 (6), pp. 690–704.

    Article  Google Scholar 

  62. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon, New York, NY, 1995, pp. 369–78.

    Google Scholar 

  63. S. Berbenni, V. Favier, and M. Berveiller: Int. J. Plasticity, 2007, vol. 23, pp. 114–42.

    Article  Google Scholar 

  64. D.H. Shin, W.G. Kim, J.Y. Ahn, K.T. Park, and N.J. Kim: La Metall. Ital., 2006, vol. 5, pp. 49–54.

    Google Scholar 

  65. Stephen D. Antolovich and Ronald W. Armstrong: Progr. Mater. Sci., 2014, vol. 59, pp. 1–160.

    Article  Google Scholar 

  66. P. Zhang, S.X. Li, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 529, pp. 62–73.

    Article  Google Scholar 

  67. V.G. Gavriljuk: Mater. Sci. Eng. A, 2003, vol. 345, pp. 81–89.

    Article  Google Scholar 

  68. C. Borchersa, T. Al-Kassaba, S. Gotoa, and R. Kirchheim: Mater. Sci. Eng. A, 2009, vol. 502, pp. 131–38.

    Article  Google Scholar 

  69. Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim: Acta Mater., 2011, vol. 59, pp. 3965–77.

    Article  Google Scholar 

  70. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.-J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.

    Article  Google Scholar 

  71. Y.V. Ivanisenko1’, R.Z. Valiev, W. Lojkowski, A. Grob, and H.-J. Fecht: in Ultrafine-Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.S. Lowe, eds., TMS, Seattle, WA, 2002, p. 17.

  72. Y. Ivanisenko, R.K. Wunderlich, R.Z. Valiev, and H.J. Fecht: Scripta Mater., 2003, vol. 49, pp. 947–52.

    Article  Google Scholar 

  73. K.T. Park, C.S. Lee, and D.H. Shin: Rev. Adv. Mater. Sci., 2005, vol. 10, pp 133–37.

    Google Scholar 

  74. J.R. Tarpani, M.H.P. Braz, W.W. Bose Filho, and D. Spinelli: Mater. Res., 2002, vol. 5, pp. 357–64.

    Article  Google Scholar 

  75. I.M. Safarov, A.V. Korznikov, R.M. Galeev, S.N. Sergeev, S.V. Gladkovskii, E.M. Borodin, and I.Y. Pyshmintsev: Phys. Met. Metallogr., 2014, vol. 115, pp. 295–302.

    Article  Google Scholar 

  76. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Mater. Trans., 2004, vol. 45, pp. 2272–81.

    Article  Google Scholar 

  77. J.I. Leinonen: Acta Polytech., 2004, vol. 44, pp. 37–40.

    Google Scholar 

  78. A. Haldar, S. Suwas, and D.M. Bhattacharjee: Texture in Steels, Springer, New York, NY, 2009, pp. 185–205.

    Book  Google Scholar 

  79. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39 (4), pp. 129–72.

    Article  Google Scholar 

  80. Pei He: On the Structure-Property Correlation and the Evolution of Nanofeatures in 12-13.5 pct Cr Oxide Dispersion Strengthened Ferritic Steels, KIT Scientific Publishing, 2013, vol. 31, p. 152.

Download references

Acknowledgments

The authors thank the Department of Science and Technology, the Government of India, for the financial support under Project No. SR/S3/ME/0009/2010 (G) dated July 14, 2011. They also gratefully acknowledge the help of Professor I. Samajdar, Indian Institute of Technology Bombay, for extending the OIM facility supported by the Intensification of Research in High Priority Areas of DST, New Delhi, and the X-ray diffraction facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manna.

Additional information

Manuscript submitted June 28 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.B., Mukhopadhyay, N.K., Sastry, G.V.S. et al. Recovery of Ductility in Ultrafine-Grained Low-Carbon Steel Processed Through Equal-Channel Angular Pressing Followed by Cold Rolling and Flash Annealing. Metall Mater Trans A 48, 1189–1203 (2017). https://doi.org/10.1007/s11661-016-3892-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3892-x

Keywords

Navigation