Skip to main content

Advertisement

Log in

Microstructure, Precipitation, and Mechanical Properties of V-N-Alloyed Steel After Different Cooling Processes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three cooling processes (direct air cooling, water cooling to 1023 K and 873 K (750 °C and 600 °C) followed by air cooling) after hot rolling are designed to develop V-N-alloyed 600 MPa grade high-strength steel for architectural construction. Microstructural characteristics, precipitation behavior, and mechanical properties were investigated. Experimental results indicate that all microstructures are composed of polygonal ferrite and pearlite. Compared to the microstructure obtained from traditional direct air cooling, the grain size of ferrite is refined from 6.5 to 4.6 μm and the interlamellar spacing of pearlite decreases from 136 to 45 nm, respectively, by the application of accelerated cooling and lower finish cooling temperature. The number fraction of high misorientation angle boundaries increases from 44 to 51 pct. Moreover, the sheet spacing of interphase precipitates decreases from (23 to 26 nm) to (14 to 17 nm) and the size of V(C,N) particles reduces from (5 to 8 nm) to (2 to 5 nm). Furthermore, the optimal mechanical properties are obtained in the steel water cooled to 873 K (600 °C), of which the yield strength, tensile strength, total elongation, uniform elongation, and impact energy at room temperature are 753 MPa, 922 MPa, 22 pct, 11 pct, and 36 J, respectively. Besides, the high yield strength is primarily attributed to the refined grains and precipitation hardening from interphase and random precipitation of nano-scale V(C,N) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1. J. Hu, L.X. Du, J.J. Wang, and C.R. Gao: Mater. Sci. Eng. A, 2013, vol. 577, pp. 161–68.

    Article  Google Scholar 

  2. 2. A.I. Zaky, A. El-Morsy, and T. El-Bitar: J. Mater. Process. Technol., 2009, vol. 209, pp. 1565–69.

    Article  Google Scholar 

  3. 3. L. Ceschini, A. Marconi, C. Martini, A. Morri, and A. Di Schino: Mater. Des., 2013, vol. 45, pp. 171–78.

    Article  Google Scholar 

  4. 4. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 197–204.

    Article  Google Scholar 

  5. 5. M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. López: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–69.

    Article  Google Scholar 

  6. 6. T.N. Baker: Mater. Sci. Technol., 2009, vol. 25, pp. 1083–1107.

    Article  Google Scholar 

  7. 7. S.F. Medina, M. Gómez, and L. Rancel: Scripta Mater., 2008, vol. 58, pp. 1110–13.

    Article  Google Scholar 

  8. 8. J. Hu, L.X. Du, H. Xie, X.H. Gao, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 607, pp. 122–31.

    Article  Google Scholar 

  9. 9. K. He and D.V. Edmonds: Mater. Sci. Technol., 2002, vol. 18, pp. 289–96.

    Article  Google Scholar 

  10. 10. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang: Mater. Sci. Eng. A, 2014, vol. 594, pp. 389–93.

    Article  Google Scholar 

  11. 11. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945–51.

    Article  Google Scholar 

  12. 12. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, and K. Tsuzaki: Acta Mater., 2015, vol. 84, pp. 375–84.

    Article  Google Scholar 

  13. 13. G. Miyamoto, R. Hori, B. Poorganji, and T. Furuhara: ISIJ Int., 2011, vol. 51, pp. 1733–39.

    Article  Google Scholar 

  14. 14. G.L. Dunlop and R.W.K. Honeycombe: Met. Sci., 1976, vol. 10, pp. 124–32.

    Article  Google Scholar 

  15. 15. R.W.K. Honeycombe and R.F. Mehl: Metall. Trans. A, 1976, vol. 7, pp. 915–36.

    Article  Google Scholar 

  16. 16. S. Gündüz and R.C. Cochrane: Mater. Des., 2005, vol. 26, pp. 486–92.

    Article  Google Scholar 

  17. 17. M.D.M.A. Bepari: Metall. Trans. A, 1990, vol. 21, pp. 2839–55.

    Article  Google Scholar 

  18. 18. S.H.M. Azghandi, V.G. Ahmadabadi, I. Raoofian, F. Fazeli, M. Zare, A. Zabett, and H. Reihani: Mater. Des., 2015, vol. 88, pp. 751–58.

    Google Scholar 

  19. 19. J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun: Mater. Des., 2014, vol. 53, pp. 332–37.

    Article  Google Scholar 

  20. 20. V.S.A. Challa, W.H. Zhou, R.D.K Misra, R. O’Malley, and S.G. Jansto: Mater. Sci. Eng. A, 2014, vol. 595, pp. 143–53.

    Article  Google Scholar 

  21. 21. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Article  Google Scholar 

  22. 22. H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang: Acta Mater., 2011, vol. 59, pp. 6264–74.

    Article  Google Scholar 

  23. 23. J. Hu, L.X. Du, J.J. Wang, C.R. Gao, T.Z. Yang, A.Y. Wang, and R.D.K. Misra: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4937–47.

    Article  Google Scholar 

  24. 24. C.P. Reip, S. Shanmugam, and R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307–17.

    Article  Google Scholar 

  25. 25. R. Okamoto, A. Borgenstam, and J. Ågren: Acta Mater., 2010, vol. 58, pp. 4783–90.

    Article  Google Scholar 

  26. 26. M.Y. Chen, H.W. Yen, and J.R. Yang: Scripta Mater., 2013, vol. 68, pp. 829–32.

    Article  Google Scholar 

  27. 27. T. Murakami, H. Hatano, G. Miyamoto, and T. Furuhara: ISIJ Int., 2012, vol. 52, pp. 616–25.

    Article  Google Scholar 

  28. 28. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du: Mater. Sci. Eng. A, 2011, vol. 529, pp. 192–200.

    Article  Google Scholar 

  29. 29. P. Cizek, B.P. Wynne, C.H.J. Davies, and P.D. Hodgson: Metall. Trans. A, 2015, vol. 46, pp. 407–25.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51374018). And the authors also want to express sincere thanks to Doctor Li You from the State Key Laboratory for Advanced Metals and Materials, for his assistance with TEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ming Wang.

Additional information

Manuscript submitted February 16, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, FM., Yang, ZB. et al. Microstructure, Precipitation, and Mechanical Properties of V-N-Alloyed Steel After Different Cooling Processes. Metall Mater Trans A 47, 6621–6631 (2016). https://doi.org/10.1007/s11661-016-3763-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3763-5

Keywords

Navigation