Skip to main content
Log in

Formation and Growth Kinetics of Reverted Austenite During Tempering of a High Co-Ni Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is well known that high Co-Ni steels exhibit excellent toughness. Since the good toughness in these steels is supposed to be related to thin layers of austenite between martensite crystals, this work presents an experimental study corroborated with diffusional calculations to characterize the evolution of reverted austenite. Atom probe measurements were conducted for analyzing the element distribution in austenite and martensite during tempering. These results were correlated with crystallographic information, which was obtained by using transmission electron microscopy investigations. Additionally, the experimental findings were compared with kinetic calculations with DICTRA™. The investigations reveal that reverted austenite formation during tempering is connected with a redistribution of Ni, Co, Cr, and Mo atoms. The austenite undergoes a Ni and Cr enrichment and a Co depletion, while in the neighboring martensite, a zone of Ni and Cr depletion and Co enrichment is formed. The changes in the chemical composition of austenite during tempering affect the stability of the austenite against phase transformation to martensite during plastic deformation and have thus decisive influence on the toughness of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Cho, J. Choi, H. Kang, S. Kim, K. Lee, H. Yang, and H. Kwon: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7286–93.

    Article  Google Scholar 

  2. P. M. Novotny and G. E. Maurer: Adv. Mater. Process., 2007, vol. 165, pp. 37–40.

    Google Scholar 

  3. G. Haidemenopoulos: PhD Thesis, Massachusetts Institute of Technology, 1988.

  4. H.E. Lippard: PhD Thesis, Northwestern University, Evanston Illinois, 1999.

  5. C.J. Kuehmann: PhD Thesis, Northwestern University, Evanston, Illinois, 1994.

  6. R. Ayer and P. Machmeier: Metall. Trans. A, 1993, vol. 24A, pp. 1943–55.

    Article  Google Scholar 

  7. K. Sato: PhD Thesis, University of California, Berkeley, 2002.

  8. G. Haidemenopoulos, M. Grujicic, G. Olson and M. Cohen: J. Alloy. Compd., 1995, vol. 220, pp. 142–47.

    Article  Google Scholar 

  9. H.E. Leal: PhD Thesis, Massachusetts Institute of Technology, 1984.

  10. M. Gruber, S. Ploberger, G. Ressel, M. Wiessner, M. Hausbauer, S. Marsoner and R. Ebner: Arch. Metall. Mater., 2015, vol. 60, pp. 2131–37.

    Google Scholar 

  11. R. Ayer, and P. M. Machmeier: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2510–17.

    Article  Google Scholar 

  12. C.H. Yoo, H.M. Lee, J.W. Chan, and J.W. Morris: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3466–72.

    Article  Google Scholar 

  13. T. Waitz, T. Antretter, F. Fischer, and H. Karnthaler: Mater. Sci. Technol., 2008, vol. 24, pp. 934–40.

    Article  Google Scholar 

  14. H.K.D.H. Bhadeshia, and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411–19.

    Article  Google Scholar 

  15. V. Raghaven: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 237–42.

    Article  Google Scholar 

  16. R.L. Klueh, P.J. Maziasz, and E.H. Lee: Mater. Sci. Eng. A, 1988, vol. 102, pp. 115–24.

    Article  Google Scholar 

  17. A. Young: The Rietveld Method, Oxford University Press, Oxford, 2002.

    Google Scholar 

  18. M.K. Miller, A. Cerezo, M.G. Hetherington and G.D.W. Smith: Atom Probe Field Ion Microscopy, Oxford University Press Inc., New York, 1996.

    Google Scholar 

  19. MOB2-TCS Alloy Mobility Database, DICTRA version 24, Foundation for Computational Thermodynamics Stockholm.

  20. TCFE3-TCS Steels/Fe-alloys Database, Thermo-Calc version R, Foundation of Computational Thermodynamics Stockholm.

  21. A. Einstein: Ann. Phys., 1905, vol. 17, pp. 549–60.

    Article  Google Scholar 

  22. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    Google Scholar 

  23. O. Dmitrieva, D. Ponge, G. Inden, J. Millan, P. Choi, J. Sietsma, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 364–74.

    Article  Google Scholar 

  24. M. Gruber, S. Ploberger, M. Wiessner, S. Marsoner, and R. Ebner: Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials, Whistler, 2015, pp. 115-22.

  25. D. Raabe, S. Sandlöbes, J. Millan, D. Ponge, H. Assadi, M. Herbi, and P. Choi: Acta Mater., 2013, vol. 61, pp. 6132–52.

    Article  Google Scholar 

  26. R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E. Povoden-Karadeniz, E. Kozeschnik, and H. Leitner: Mater. Chem. Phys., 2010, vol. 122, pp. 138–45.

    Article  Google Scholar 

  27. L.T. Shiang, and C.M. Wayman: Metallography, 1988, vol. 21, pp. 425–51.

    Article  Google Scholar 

  28. X. Li, and Z. Yin: Mater. Lett., 1995, vol. 24, pp. 239–42.

    Article  Google Scholar 

  29. M. Farooque, H. Ayub, A.U. Haq, and A. Khan: J. Mater. Sci., 1998, vol. 33, pp. 2927–30.

    Article  Google Scholar 

  30. J. Wang, and S. Van der Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

  31. C. Garcia-Mateo, F.G. Caballero, M.K. Miller, and J.A. Jimenez: J. Mater. Sci., 2012, vol. 47, pp. 1004–10.

    Article  Google Scholar 

  32. J. Speer, D.K. Matlock, B.C. De. Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Google Scholar 

Download references

Acknowledgments

Financial support for part of the work by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wissenschaft, Forschung und Wirtschaft) represented by Österreichische Forschungsförderungsgesellschaft mbH and the Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged. The authors thank also Krystina Spiradek-Hahn for the support regarding TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gruber.

Additional information

Manuscript submitted May 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, M., Ressel, G., Méndez Martín, F. et al. Formation and Growth Kinetics of Reverted Austenite During Tempering of a High Co-Ni Steel. Metall Mater Trans A 47, 5932–5941 (2016). https://doi.org/10.1007/s11661-016-3760-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3760-8

Keywords

Navigation