Skip to main content
Log in

Effects of Iron-Rich Intermetallics and Grain Structure on Semisolid Tensile Properties of Al-Cu 206 Cast Alloys near Solidus Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of iron-rich intermetallics and grain size on the semisolid tensile properties of Al-Cu 206 cast alloys near the solidus were evaluated in relation to the mush microstructure. Analyses of the stress–displacement curves showed that the damage expanded faster in the mush structure dominated by plate-like β-Fe compared to the mush structure dominated by Chinese script-like α-Fe. While there was no evidence of void formation on the β-Fe intermetallics, they blocked the interdendritic liquid channels and thus hindered liquid flow and feeding during semisolid deformation. In contrast, the interdendritic liquid flows more freely within the mush structure containing α-Fe. The tensile properties of the alloy containing α-Fe are generally higher than those containing β-Fe over the crucial liquid fraction range of ~0.6 to 2.8 pct, indicating that the latter alloy may be more susceptible to stress-related casting defects such as hot tearing. A comparison of the semisolid tensile properties of the alloy containing α-Fe with different grain sizes showed that the maximum stress and elongation of the alloy with finer grains were moderately higher for the liquid fractions of ~2.2 to 3.6 pct. The application of semisolid tensile properties for the evaluation of the hot tearing susceptibility of experimental alloys is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.M. Kareh, P.D. Lee, R.C. Atwood, T. Connolley, and C.M. Gourlay: Nat. Commun., 2014, vol. 5, p. 3782.

    Article  Google Scholar 

  2. L.J. Colley, M.A. Wells, and D.M. Maijer: Mater. Sci. Eng. A, 2004, vol. 386, pp. 140–48.

    Article  Google Scholar 

  3. A.B. Phillion, S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Eng. A, 2008, vol. 497, pp. 388–94.

    Article  Google Scholar 

  4. W.M. Van Haaften, W.H. Kool, and L. Katgerman: Mater. Sci. Eng. A, 2002, vol. 336, pp. 1–6.

    Article  Google Scholar 

  5. G. Chen, J. Jiang, Z. Du, F. Han, and H.V. Atkinson: Mater. Des., 2014, vol. 54, pp. 1–5.

    Article  Google Scholar 

  6. I. Farup, J.M. Drezet, and M. Rappaz: Acta Mater., 2011, vol. 49, pp. 1261–69.

    Article  Google Scholar 

  7. D.G. Eskin, Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711.

    Article  Google Scholar 

  8. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    Article  Google Scholar 

  9. E. Giraud, M. Suery, and M. Coret: Metall. Mater. Trans. A, 2011 vol. 42A, pp. 3370–77.

    Article  Google Scholar 

  10. O. Ludwig, J.M. Drezet, P. Ménésès, C.L. Martin, and M. Suéry: Mater. Sci. Eng. A, 2005, vol. 413–14, pp. 174–79.

    Article  Google Scholar 

  11. D. Fabrègue, A. Deschamps, M. Suery, and J.M. Drezet: Acta Mater., 2006, vol. 54, pp. 5209–20.

    Article  Google Scholar 

  12. A.K. Dahle, T. Sumitomo, and S. Instone: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 105–13.

    Article  Google Scholar 

  13. A.K. Dahle and L. Arnberg: Acta Mater., 1997, vol. 45, pp. 547–59.

    Article  Google Scholar 

  14. A. Alankar and M.A. Wells: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7812–20.

    Article  Google Scholar 

  15. S.M. Mohseni, A.B. Phillion, and D.M. Maijer: Mater. Sci. Eng. A, 2016, vol. 649, pp. 382–89.

    Article  Google Scholar 

  16. V. Mathier, P.-D. Grasso, and M. Rappaz: Metall. Mater. Trans. A, 2008, vol. 39A, 1399–409.

    Article  Google Scholar 

  17. E. Giraud, M. Suery, and M. Coret: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2257–68.

    Article  Google Scholar 

  18. J. Liu, L. Qi, P. Liu, J. Guan, and J. Zhou: Mater. Sci. Eng. A, 2014, vol. 596, pp. 157–64.

    Article  Google Scholar 

  19. A.B. Phillion, S.L. Cockcroft, and P.D. Lee: Mater. Sci. Eng. A, 2008, vol 491, pp. 237–47.

    Article  Google Scholar 

  20. C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 292–303.

    Article  Google Scholar 

  21. B. Cai, S. Karagadde, L. Yuan, T.J. Marrow, T. Connolley, and P.D. Lee: Acta Mater., 2014, vol. 76, pp. 371–80.

    Article  Google Scholar 

  22. C. Puncreobutr, A.B. Phillion, J.L. Fife, and P.D. Lee: Acta Mater., 2014, vol. 64, pp. 316–25.

    Article  Google Scholar 

  23. M. Sistaninia, A.B. Phillion, J.M. Drezet, and M. Rappaz: Acta Mater., 2012, vol. 60, p. 6793.

    Article  Google Scholar 

  24. A.B. Phillion, P.D. Lee, E. Maire, and S.L. Cockcroft: Metall. Mater. Trans. A, 2008, vol. 39A, 2459–69.

    Article  Google Scholar 

  25. D. Fabrègue, a. Deschamps, M. Suéry, and W.J. Poole: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1459–67.

  26. O. Ludwig, J.-M. Drezet, C.L. Martin, and M. Suéry: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1525–35.

    Article  Google Scholar 

  27. A. B. Phillion, R.W. Hamilton, D. Fuloria, A.C.L. Leung, P. Rockett, T. Connolley, and P.D. Lee: Acta Mater., 2011, vol. 59, pp. 1436–44.

    Article  Google Scholar 

  28. C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, and A.B. Phillion: Acta Mater., 2014, vol. 68, pp. 42–51.

    Article  Google Scholar 

  29. S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien, E. Maire, Y. Pannier, M. Bornert, D. Bernard, M. Felberbaum, M. Rappaz, and E. Boller: Scr. Mater., 2009, vol. 61, pp. 449–52.

    Article  Google Scholar 

  30. K. Hu, A.B. Phillion, D.M. Maijer, and S.L. Cockcroft: Scr. Mater., 2009, vol. 60, pp. 427–30.

    Article  Google Scholar 

  31. L. Sweet, M.A. Easton, J.A. Taylor, J.F. Grandfield, C.J. Davidson, L. Lu, M.J. Couper, and D.H. Stjohn:Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5396–407.

    Article  Google Scholar 

  32. G.K. Sigworth and J. Major: TMS Light Met., 2006, pp. 795–800.

  33. G.K. Sigworth and F. DeHart: Trans. Am. Foundry Soc., 2003, vol. 111, pp. 341–45.

    Google Scholar 

  34. G.K. Sigworth, AMD 305 Final Report, USCAR, 2002.

  35. F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, and N. Hort: Mater. Des., 2014, vol. 64, pp. 44–55.

    Article  Google Scholar 

  36. H. Kamguo Kamga, D. Larouche, M. Bournane, and A. Rahem: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7413–23.

  37. K. Liu, X. Cao, and X.-G. Chen: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2004–16.

    Article  Google Scholar 

  38. K. Liu, X. Cao, and X.G. Chen: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1231–40.

    Article  Google Scholar 

  39. K. Liu, X. Cao, and X.-G. Chen: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2498–507.

    Article  Google Scholar 

  40. K. Liu, X. Cao, and X.-G. Chen: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1566–75.

    Article  Google Scholar 

  41. Y. Birol: J. Alloys Compd., 2009, vol. 486, pp. 173–77.

    Article  Google Scholar 

  42. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  Google Scholar 

  43. H. Nagaumi, S. Suzuki, T. Okane, and T. Umeda: Metall. Mater. Trans. A, 2006, vol. 47A, pp. 2821–27.

    Google Scholar 

  44. L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1737–49.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from Rio Tinto Aluminum through the NSERC Industrial Research Chair in Metallurgy of Aluminum Transformation at the University of Québec at Chicoutimi. The authors would also like to thank Ms. E. Brideau and Mr. Dany Racine for their assistance during the semisolid tensile tests performed on the Gleeble 3800 thermomechanical simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Grant Chen.

Additional information

Manuscript submitted April 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolouri, A., Liu, K. & Chen, XG. Effects of Iron-Rich Intermetallics and Grain Structure on Semisolid Tensile Properties of Al-Cu 206 Cast Alloys near Solidus Temperature. Metall Mater Trans A 47, 6466–6480 (2016). https://doi.org/10.1007/s11661-016-3744-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3744-8

Keywords

Navigation