Skip to main content
Log in

Linking Nanoscales and Dislocation Shielding to the Ductile–Brittle Transition of Silicon

  • Symposium: Micromechanics of Advanced Materials III in Honor of J.C.M. Li
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ductile–brittle transition of nano/microscale silicon is explored at low-temperature, high stress conditions. A pathway to eventual mechanism maps describing this ductile–brittle transition behavior using sample size, strain rate, and temperature is outlined. First, a discussion of variables controlling the BDT in silicon is given and discussed in the context of development of eventual modeling that could simultaneously incorporate all their effects. For description of energy dissipation by dislocation nucleation from a crack tip, three critical input parameters are identified: the effective stress, activation volume, and activation energy for dislocation motion. These are discussed individually relating to the controlling variables for the BDT. Lastly, possibilities for measuring these parameters experimentally are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Rabier, A. Montagne, J.M. Wheeler, J.L. Demenet, J. Michler and R. Ghisleni: Phys. Status Solidi, 2013, vol. 10, pp. 11-15.

    Article  Google Scholar 

  2. P. Veyssière, J. Rabier, J.L. Demenet and J. Castaing: Deformation of Ceramic Materials II, Plenum Press, New York, 1984, pp. 37-47.

    Book  Google Scholar 

  3. J. Rabier, L. Pizzagalli and J.L. Demenet: Dislocat. Solids, 2010, vol. 16, pp. 47-108.

    Article  Google Scholar 

  4. K. Yasutake, S. Shimizu, M. Umeno and H. Kawabe: J. Appl. Phys., 1987, 61: 940-46

    Article  Google Scholar 

  5. P.B Hirsch, S.G. Roberts and J.F. Nye: Philos. Trans. R. Soc. A, 1997, vol. 355, pp. 1991-2002.

    Article  Google Scholar 

  6. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry and W.W. Gerberich: Phys. Rev. B, 2007, vol. 75, p. 214112.

    Article  Google Scholar 

  7. F. Ostlund, K. Rzepiejewska-Malyska, K. Leifer, L.M. Hale, Y. Tang, R. Ballarini, W.W. Gerberich and J. Michler: Adv. Funct. Mater., 2009, vol. 19, pp. 2439-2444.

    Article  Google Scholar 

  8. E. Bitzek and P. Gumbsch: Acta Mater., 2013, vol. 61, pp. 1394-1403.

    Article  Google Scholar 

  9. W. Kang and M.T.A. Saif: Adv. Funct. Mater., 2013, vol. 23, pp. 713-719.

    Article  Google Scholar 

  10. A.J. Wagner, E.D. Hintsala, P. Kumar, W.W. Gerberich and K.A. Mkhoyan: Acta 
Mater., 2015, vol. 100, pp. 256-65.

    Article  Google Scholar 

  11. D.-M. Tang, C.-L. Ren, M.-S. Wang, X. Wei, N. Kawamoto, C. Liu, Y. Bando, 
M. Mitome, N. Fukata and D. Golberg (2012) Nano Lett, 12: 1898-1904.

    Article  Google Scholar 

  12. Y. Zhu, F. Xu, Q. Qin, W. Y. Fung and W. Lu: Nano Lett., 2009, vol. 9, pp. 
3934-3939.

    Article  Google Scholar 

  13. K. Zheng, X. Han, L. Wang, Y. Zhang, Y. Yue, Y. Qin, X. Zhang and Z. Zhang: 
Nano Lett., 2009, vol. 9, pp. 2471-2476.

    Article  Google Scholar 

  14. S. Hoffmann, I. Utke, B. Moser, J. Michler, S.H. Christiansen, V. Schmidt, S. 
Senz, P. Werner, U. Gösele and C. Ballif: Nano Lett., 2006, vol. 6, pp.622-625.

    Article  Google Scholar 

  15. G. Stan, S. Krylyuk, A. V. Davydov, I. Levin and R. F. Cook: Nano Lett., 2012, vol. 12, pp. 2599-2604

    Article  Google Scholar 

  16. R. Hull, ed.: Properties of Crystalline Silicon, INSPEC, Exeter, England, 1999.

    Google Scholar 

  17. E. Hintsala, C. Teresi, A.J. Wagner, K.A. Mkhoyan and W.W. Gerberich: J. 
Mater. Res., 2013, vol. 29, pp.1513-1521.

    Article  Google Scholar 

  18. H. Feng, Q.H. Fang, L.C. Zhang and Y.W. Liu: Int. J. Plast., 2013, vol. 42, pp. 
50-64.

    Article  Google Scholar 

  19. A.R. Beaber, J.D. Nowak, O. Ugurlu, W.M. Mook, S.L. Girshick, R. Ballarini and W.W. Gerberich: Philos. Mag., 2011, vol. 91, pp. 1179-1189.

    Article  Google Scholar 

  20. P. Pirouz, J.L. Demenet and M.H. Hong: Philos. Mag. A, 2001, vol. 81, pp. 
1207-1227.

    Article  Google Scholar 

  21. A. George and G. Champier: Phys. Stat. Sol., 1979, vol. 53, pp. 529-540.

    Article  Google Scholar 

  22. J.R. Patel, L.R. Testardi and P.E. Freeland: Phys. Rev. B, 1976, vol. 13, p. 
3548-3557.

    Article  Google Scholar 

  23. M.S.R.N. Kiran, T.T. Tran, L.A. Smillie, B. Haberl, D. Subianto, J.S. Williams 
and J.E. Bradby: J. Appl. Phys., 2015, vol. 117, p. 205901.

    Article  Google Scholar 

  24. T. Ando, T. Takumi, S. Nozue and K. Sato: MEMS 2011 IEEE 24 Int. Conference, 2011, pp. 436–39.

  25. D. Teirlinck, F. Zok, J.D. Embury and M.F. Ashby: Acta Metal., 1988, vol. 36, 
pp. 1213-1228.

    Article  Google Scholar 

  26. C.E. Renshaw, N. Golding and E.M. Schulson: Cold Reg. Sci. Technol., 2014, 
vol. 97, pp. 1-6.

    Article  Google Scholar 

  27. K. Kang and W. Cai: Int. J. Plast., 2010, vol. 26, pp. 1387-1401.

    Article  Google Scholar 

  28. W.W. Gerberich, D.D. Stauffer, A.R. Beaber and N.I. Tymiak: J. Mater. Res., 2012, vol. 27, pp. 552-561.

    Article  Google Scholar 

  29. J. Weertman and J.R. Weertman: Annu. Rev. Earth Planet. Sci., 1975, vol. 3, pp.293-315.

    Article  Google Scholar 

  30. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. A 62(1), 49 (1949).

    Article  Google Scholar 

  31. Yamashita, Y., et al. Phys. Status Solidi(a) 171(1) (1999): 27-34.

    Article  Google Scholar 

  32. H.R. Kolar, J.C.H. Spence and H. Alexander: Phys. Rev. Lett., 1996, vol. 11, pp. 
4031-34.

    Article  Google Scholar 

  33. Küsters, KH., and H. Alexander (1983) Physica B+C 116(1): 594-599.

    Google Scholar 

  34. T. Namazu, Y. Isono and T. Tanaka: J. (2002) Microelectromech. Syst., 11: 125-35.

    Article  Google Scholar 

  35. B. Moser, K. Wasmer, L. Barbieri and J. Michler: J. Mater. Res., 2007, vol. 22, 
pp. 1004-1011.

    Article  Google Scholar 

  36. W. W. Gerberich, J. Michler, W. M. Mook, R. Ghisleni, F. Ostlund, D. D. 
Stauffer and R. Ballarini: J.Mater. Res., 2004, vol. 24, pp. 898-906.

    Article  Google Scholar 

  37. Kiener, D., and A. M. Minor. Nano letters 11.9 (2011): 3816-3820.

    Article  Google Scholar 

  38. Frick, C. P., et al. Materials Science and Engineering: A 489.1 (2008): 319-329.

    Article  Google Scholar 

  39. A.M. Minor, J.W. Morris Jr. and E.A. Stach: Appl. Phys. Lett., 2001, vol. 17, pp. 1625-1627.

    Article  Google Scholar 

  40. Nelmes, R. J., and M. I. McMahon. Semiconductors and Semimetals 54 (1998): 177-180

    Google Scholar 

  41. Q. Wei, S. Cheng, K.T. Ramesh and E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, 354-366.

    Article  Google Scholar 

  42. Wheeler, J. M., et al. (2015) Curr. Opin. Solid State Mater. Sci. 19(6):354-366

    Article  Google Scholar 

  43. Yu, Q., M. Legros, and A. M. Minor. MRS Bulletin 40.01 (2015): 62-70.

    Article  Google Scholar 

  44. Ozdol, V. B., et al. Applied Physics Letters 106.25 (2015): 253107.

    Article  Google Scholar 

  45. E. Bitzek, J.R. Kermode and P. Gumbsch: Int. J. Fract., 2015, vol. 191, pp. 13-30.

    Article  Google Scholar 

Download references

Acknowledgments

Parts of this work were carried out in the Characterization Facility and the Minnesota Nanocenter, University of Minnesota, which receives partial support from NSF through the MRSEC program. The authors would like to thank Hysitron for their support along with providing facilities for the high-temperature SEM testing. Research by the second author was performed under appointment of the Rickover Fellowship Program in Nuclear Engineering sponsored by the Naval Reactor Division of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ERIC Hintsala.

Additional information

Manuscript submitted April 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintsala, E., Teresi, C. & Gerberich, W.W. Linking Nanoscales and Dislocation Shielding to the Ductile–Brittle Transition of Silicon. Metall Mater Trans A 47, 5839–5844 (2016). https://doi.org/10.1007/s11661-016-3614-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3614-4

Keywords

Navigation