Skip to main content
Log in

Solute-Derived Thermal Stabilization of Nano-sized Grains in Melt-Spun Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal stabilization of nanograined metallic microstructures (or nanostructures) can be difficult due to the large driving force for growth that arises from the inherently significant boundary area. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Alternatively, thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 pct by mole Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. Following 1-hour annealing treatments at 673 K (400 °C) (0.72 Tm), 773 K (500 °C) (0.83 Tm), and 873 K (600 °C) (0.94 Tm), the alloys remain nanocrystalline (<100 nm) as measured by Warren–Averbach Fourier analysis of X-ray diffraction peaks and direct observation of TEM dark-field micrographs, with the efficacy of stabilization: Sr ≈ Yb > Sc. The disappearance of intermetallic phases in the Sr- and Yb-containing alloys in the X-ray diffraction spectra is observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Al-1X (X=Sr, Yb, Sc) alloys are described in terms of mole fraction percent throughout the remainder of the text.

References

  1. C. Koch: J. Mater. Sci., 2007, vol. 42, pp. 1403–1414.

    Article  Google Scholar 

  2. P.V. Liddicoat, X.-Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nat. Commun., 2010, vol. 1, p. 63.

    Article  Google Scholar 

  3. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. Aust: Scr. Metal. Mater.,1991, vol. 25, pp. 2711–2716.

    Article  Google Scholar 

  4. R. Averback, H. Höfler, and R. Tao, Mater. Sci. Eng. A, 1993, vol. 166, pp. 169–177.

    Article  Google Scholar 

  5. Z. Gao, and B. Fultz, Nanostruct. Mater., 1994, vol. 4, pp. 939–47.

    Article  Google Scholar 

  6. A. Michels, C. Krill, H. Ehrhardt, R. Birringer, and D. Wu, Acta Mater., 1999, vol. 47, pp. 2143–2152.

    Article  Google Scholar 

  7. P.C. Millett, R.P. Selvam, and A. Saxena, Acta Mater., 2007, vol. 55, pp. 2329–2336.

    Article  Google Scholar 

  8. Darling, K., B. VanLeeuwen, C. Koch and R. Scattergood, Mater. Sci. Eng., 2010, vol. 527, pp. 3572–80.

    Article  Google Scholar 

  9. K. Darling, B. VanLeeuwen, J. Semones, C. Koch, R. Scattergood, L. Kecskes, and S. Mathaudhu, Mater. Sci. Eng. A 2011, vol. 528, pp. 4365–71.

    Article  Google Scholar 

  10. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science, 2012, vol. 337, pp. 951–54.

    Article  Google Scholar 

  11. P. Knauth, A. Charai, and P. Gas, Scr. Metall. Mater., 1993, vol. 28, pp. 325–30.

    Article  Google Scholar 

  12. P. Wynblatt, and D. Chatain, Metall and Mat Trans A 2006, vol. 37, pp. 2595-2620.

    Article  Google Scholar 

  13. J. Weissrmiller, J. Mater. Res., 1994, vol. 9.

  14. Kirchheim, R., Acta materialia 2002, vol. 50, pp. 413-419.

    Article  Google Scholar 

  15. Liu, F. and R. Kirchheim, Journal of crystal growth 2004, vol. 264, pp. 385-391.

    Article  Google Scholar 

  16. Liu, F. and R. Kirchheim, Scripta materialia 2004, vol. 51, pp. 521-25.

    Article  Google Scholar 

  17. A. Sutton, and R. Balluffi, Interfaces in Crystalline Solids, Clarendon: Oxford 1995

    Google Scholar 

  18. Saber, M., H. Kotan, C. C. Koch and R. O. Scattergood, Journal of Applied Physics 2013, vol. 113, pp. 063515-063515-10.

    Article  Google Scholar 

  19. Friedel, J., Advances in Physics 1954, vol. 3, pp. 446-507.

    Article  Google Scholar 

  20. Jones, H., Reports on Progress in Physics 1973, vol. 36, p. 1425.

    Article  Google Scholar 

  21. Zhou, F., J. Lee and E. Lavernia, Scripta materialia 2001, vol. 44, pp. 2013-2017.

    Article  Google Scholar 

  22. Abdoli, H., M. Ghanbari and S. Baghshahi, Materials Science and Engineering: A 2011, vol. 528, pp. 6702-6707.

    Article  Google Scholar 

  23. Fecht, H.-J., Nanostructured Materials 1995, vol. 6, pp. 33-42.

    Article  Google Scholar 

  24. Liu, W. J., C. Sun, P. X. Zhao and S. F. Wang, Advanced Materials Research 2012, vol. 550, pp. 71-74.

    Google Scholar 

  25. Halder, N. and C. Wagner, Adv. X-ray Anal 1966, vol. 9, pp. 91-102.

    Google Scholar 

  26. Halder, N. and C. Wagner, Acta Crystallographica 1966, vol. 20, pp. 312-313.

    Article  Google Scholar 

  27. Warren, B. and B. Averbach, Journal of Applied Physics 1952, vol. 23, pp. 497-497.

    Article  Google Scholar 

  28. B. Warren, and X.-R. Diffraction, New York, 1990, p. 251.

  29. Chen, M., E. Ma, K. J. Hemker, H. Sheng, Y. Wang and X. Cheng, Science 2003, vol. 300, pp. 1275-1277.

    Article  Google Scholar 

  30. Kril, C. and R. Birringer, Philosophical Magazine A 1998, vol. 77, pp. 621-640.

    Article  Google Scholar 

  31. Abràmoff, M. D., P. J. Magalhães and S. J. Ram, Biophotonics international 2004, vol. 11, pp. 36-43.

    Google Scholar 

  32. Wagner, C. N., E. Yang and M. S. Boldrick, Journal of non-crystalline solids 1995, vol. 192, pp. 574-577.

    Article  Google Scholar 

  33. Gibbons, J. D., Gibbons nonparametric methods for quantitative analysis, Holt, Rinehart and Winston: New York, 1976.

    Google Scholar 

  34. Smith, N. A., N. Sekido, J. H. Perepezko, A. B. Ellis and W. C. Crone, Scripta materialia 2004, vol. 51, pp. 423-426.

    Article  Google Scholar 

  35. Zhong, Y., C. Wolverton, Y. Austin Chang and Z.-K. Liu, Acta materialia 2004, vol. 52, pp. 2739-2754.

    Article  Google Scholar 

  36. Weissmüller, J. and C. Lemier, Physical review letters 1999, vol. 82, p. 213.

    Article  Google Scholar 

  37. Balluffi, R. W., S. Allen and W. C. Carter: Kinetics of Materials. John Wiley & Sons, Hoboken, 2005.

    Book  Google Scholar 

  38. Zhang, Z., X. Bian, Y. Wang and X. Liu, J Mater Sci 2002, vol. 37, pp. 4473-4480.

    Article  Google Scholar 

  39. Moriarty, J. A. and M. Widom, Physical Review B 1997, vol. 56, p. 7905.

    Article  Google Scholar 

  40. F. De Boer, R. Boom, W. Mattens, A. Miedema, and A. Niessen: Cohesion in Metals: Transition Metal Alloys: Cohesion and Structure. (North-Holland, Amsterdam, 1989).

  41. Inoue, A., T. Zhang, K. Kita and T. Masumoto, JIM Mater. Trans. 1989, vol. 30, pp. 870-877.

    Article  Google Scholar 

  42. Gale, W. F. and T. C. Totemeier: Smithells metals reference book. Butterworth-Heinemann, Oxford, 2003.

    Google Scholar 

  43. Lide, D. R.: CRC handbook of chemistry and physics. CRC press, Boca Raton, 2004.

    Google Scholar 

  44. Shubin, A.B. and Yu Shunyaev, K, Russ. Metall., 2011, vol. 2011, pp. 109-13. DOI:10.1134/S003602951102011X

    Article  Google Scholar 

  45. Chang, Y., Gao, K., Wen, S., Huang, H., Wang, W., Zhu, Z., Nie, Z., and Zhou, D, J. Alloy Compd., 2014, vol. 590, pp. 26-534.

    Article  Google Scholar 

  46. D. Porter and K. Easterling: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 1992.

    Book  Google Scholar 

  47. G. Borzone, A.M. Cardinale, N. Pariodi, and G. Cacciamani, Journal of Alloys and Compounds, 1997, vol. 247, pp. 141-147.

    Article  Google Scholar 

  48. P. Villars and K. Cenzual, Pearson’s crystal data—crystal structure database for inorganic compounds, release 2012/13 Materials Park, Ohio, USA, ASM International.

Download references

Acknowledgments

The authors would like to acknowledge Paul Fraley (Michigan Technological University Particulates Processing Laboratory) for his assistance in melt-spinning sample preparation, Ed Laitila (Michigan Technological University Applied Chemical and Morphological Analysis Laboratory) for his assistance in X-ray diffraction analysis, and Owen Mills (Applied Chemical and Morphological Analysis Laboratory) for his assistance in TEM sample preparation.

The following copyright wording should be placed in the block with the author affiliations: E.A. Lass is employed by National Institute of Standards and Technology. U.S. Government work is not protected by U.S. Copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Baker.

Additional information

E.A. Lass is employed by the National Institute of Standards and Technology. U.S. Government work is not protected by U.S. Copyright.

Manuscript submitted June 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, A.H., Sanders, P.G., Lass, E.A. et al. Solute-Derived Thermal Stabilization of Nano-sized Grains in Melt-Spun Aluminum. Metall Mater Trans A 47, 4287–4300 (2016). https://doi.org/10.1007/s11661-016-3551-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3551-2

Keywords

Navigation