Skip to main content
Log in

Size Effect on Magnesium Alloy Castings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of grain size on tensile and fatigue properties has been investigated in cast Mg alloys of Mg-2.98Nd-0.19Zn (1530 μm) and Mg-2.99Nd-0.2Zn-0.51Zr (41 μm). The difference between RB and push–pull fatigue testing was also evaluated in both alloys. The NZ30K05-T6 alloy shows much better tensile strengths (increased by 246 pct in YS and 159 pct in UTS) and fatigue strength (improved by ~80 pct) in comparison with NZ30-T6 alloy. RB fatigue testing results in higher fatigue strength compared with push–pull fatigue testing, mainly due to the stress/strain gradient in the RB specimen cross section. The material with coarse grains could be hardened more in the cyclic loading condition than in the monotonic loading condition, corresponding to the lower σ f and the higher σ f/σ b or σ f/σ 0.2 ratio compared to the materials with fine grains. The fatigue crack initiation sites and failure mechanism are mainly determined by the applied stress/strain amplitude. In LCF, fatigue failure mainly originates from the PSBs within the surface or subsurface grains of the samples. In HCF, cyclic deformation and damage irreversibly caused by environment-assisted cyclic slip is the crucial factor to influence the fatigue crack. The Coffin–Manson law and Basquin equation, and the developed MSF models and fatigue strength models can be used to predict fatigue lives and fatigue strengths of cast magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens: JOM (Journal of Metals), 2007, vol. 59, pp. 48-57.

    Google Scholar 

  2. A.A. Luo: Int. Mater. Reviews, 2004, vol. 49, pp. 13-30.

    Article  Google Scholar 

  3. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Metall. Mater. Trans. A, 2008, vol. 39, pp. 3014-26.

    Article  Google Scholar 

  4. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Int. J. Fatigue, 2009, vol. 31, pp. 726-35.

    Article  Google Scholar 

  5. Q.Z. Li, Q Yu, J.X. Zhang, and Y.Y. Jiang: Scripta Mater., 2010, vol. 62, pp. 778-81.

    Article  Google Scholar 

  6. 6. K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, and J. Fan: Int. J. Fract., 2001, vol. 108, pp. 207-33.

    Article  Google Scholar 

  7. 7. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Scripta Mater., 2007, vol. 56, pp. 1-4.

    Article  Google Scholar 

  8. 8. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, pp. 245-56.

    Article  Google Scholar 

  9. 9. M.F. Horstemeyer, N. Yang, K. Gall, D.L. McDowell, J. Fan, and P.M. Gullett: Acta Mater., 2004, vol. 52, pp. 1327-36.

    Article  Google Scholar 

  10. 10. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, H.Y. Jiang, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 579, pp. 170-9.

    Article  Google Scholar 

  11. 11. Z.M. Li, Q.G. Wang, A.A. Luo, L.M. Peng, P.H. Fu, and Y.X. Wang. Mater. Sci. Eng. A, 2013, vol. 582, pp. 170-7.

    Article  Google Scholar 

  12. 12. Q.G. Wang, C.J. Davidson, J.R. Griffiths, and P.N. Crepeau: Metall. Mater. Trans. B, 2006, vol. 44, pp. 887-95.

    Article  Google Scholar 

  13. 13. Q.G. Wang and P.E. Jones: Metall. Mater. Trans. B, 2007, vol. 38, pp. 615-21.

    Article  Google Scholar 

  14. 14. D.K. Xu, L. Liu, B.Y. Xu, and E.H. Han: Acta Mater., 2008, vol. 56, pp. 985-94.

    Article  Google Scholar 

  15. 15. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73-84.

    Article  Google Scholar 

  16. 16. P.S. De, R.S. Mishra, and C.B. Smith: Scripta Mater., 2009, vol. 60, pp. 500-3.

    Article  Google Scholar 

  17. 17. Z.M. Li, Q.G. Wang, A.A. Luo, P.H. Fu, L.M. Peng, Y.X. Wang, and G.H. Wu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5202-15.

    Article  Google Scholar 

  18. 18. Z.M. Li, P.H. Fu, L.M. Peng, E.P. Becker, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 565, pp. 250-7.

    Article  Google Scholar 

  19. 19. L.M. Peng, P.H. Fu, Z.M. Li, H.Y. Yue, D.Q. Li, and Y.X. Wang: Mater. Sci. Eng. A, 2014, vol. 611, pp. 170-6.

    Article  Google Scholar 

  20. 20. L.M. Peng, P.H. Fu, Z.M. Li, Y.X. Wang, and H.Y. Jiang: J. Mater. Sci., 2014, vol. 49, pp. 7105-15.

    Article  Google Scholar 

  21. 21. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 85-97.

    Article  Google Scholar 

  22. 22. R.A. Siddiqui, S.A. Abdul-Wahab, and T. Pervez: Mater. Des., 2008, vol. 29, pp. 70-9.

    Article  Google Scholar 

  23. 23. M.E. Burba, M.J. Caton, S.K. Jha, and C.J. Szczepanski: Metal. Mater. Trans A, 2013, vol. 44, pp. 4954-67.

    Article  Google Scholar 

  24. 24. C.J. Davidson, J.R. Griffiths, and A.S. Machin: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 223-30.

    Article  Google Scholar 

  25. 25. Z.M. Li, Q.G. Wang, A.A. Luo, L.M. Peng, and P. Zhang: Mater. Sci. Eng. A, 2015, vol. 647, pp. 113-26.

    Article  Google Scholar 

  26. 26. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 486, pp. 183-92.

    Article  Google Scholar 

  27. 27. P.H. Fu, L.M. Peng, H.Y. Jiang, L. Ma, and C.Q. Zhai: Mater. Sci. Eng. A, 2008, vol. 496, pp. 177-88.

    Article  Google Scholar 

  28. 28. Z.M. Li, A.A. Luo, Q.G. Wang, L.M. Peng, P.H. Fu, and G.H. Wu: Mater. Sci. Eng. A, 2013, vol. 564, pp. 450-60.

    Article  Google Scholar 

  29. 29. J.W. Chang, L.M. Peng, X.W. Guo, A. Atrens, and P.H. Fu: J. Appl. Electrochem., 2008, vol. 38, pp. 207-14.

    Article  Google Scholar 

  30. 30. J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng, and W.J. Ding: Electrochim. Acta, 2007, vol. 52, pp. 3160-7.

    Article  Google Scholar 

  31. 31. J.W. Chang, P.H. Fu, X.W. Guo, and L.M. Peng: Corros. Sci., 2007, vol. 49, pp. 2612-27.

    Article  Google Scholar 

  32. 32. Z.M. Li, Q.G. Wang, A.A. Luo, P.H. Fu, and L.M. Peng: Inter. J. Fatigue, 2015, vol. 80, pp. 468-76.

    Article  Google Scholar 

  33. 33. Q.G. Wang and P. Jones: SAE Int. J. Mater. Manuf., 2011, vol. 4, pp. 289-97.

    Article  Google Scholar 

  34. 34. P.H. Fu, L.M. Peng, H.Y. Jiang, C.Q. Zhai, C.Q. Zhai, X. Gao, and J.F. Nie: Mater. Sci. Forum., 2007, vol. 546-549, pp. 97-100.

    Article  Google Scholar 

  35. 35. X.Z. Lin and D.L. Chen: Mater. Sci. Eng. A, 2008, vol. 496, pp. 106-13.

    Article  Google Scholar 

  36. 36. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, and G.Y. Li: Mater. Sci. Eng. A, 2008, vol. 494, pp. 397-400.

    Article  Google Scholar 

  37. 37. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 68-95.

    Article  Google Scholar 

  38. 38. X.Y. Lou, M. Li, P.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasti., 2007, vol. 23, pp. 44-86.

    Article  Google Scholar 

  39. 39. P.H. Fu, L.M. Peng, J.F. Nie, H.Y. Jiang, L. Ma, and L. Bourgeois: Mater. Sci. Forum., 2011, vol. 690, pp. 230-3.

    Article  Google Scholar 

  40. 40. C. Watanabe, R. Monzen, and K. Tazaki: Inter. J. Fatigue, 2008, vol. 30, pp. 635-41.

    Article  Google Scholar 

  41. 41. T.J. Marrow, A.A. Bin, I.N. Khan, S.M.A. Sim, and S. Torkamani: Mater. Sci. Eng. A, 2004, vol. 419, pp. 387-9.

    Google Scholar 

  42. 42. F. Yang, F. Lv, X.M. Yang, S.X. Li, Z.F. Zhang, and Q.D. Wang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2231-8.

    Article  Google Scholar 

  43. 43. Y.J. Wu, R. Zhu, J.T. Wang and W.Q. Ji: Scripta Mater., 2010, vol. 63, pp. 1077-80.

    Article  Google Scholar 

  44. 44. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, pp. 3493-502.

    Article  Google Scholar 

  45. 45. J. Man, M. Petrenec, K. Obrtlík, and J. Polák: Acta Mater., 2004, vol. 52, pp. 5551-61.

    Article  Google Scholar 

  46. 46. J. Man, K. Obrtlík, C. Blochwitz, and J. Polák: Acta Mater., 2002, vol. 50, pp. 3767-80.

    Article  Google Scholar 

  47. 47. J. Polák, J. Man, T. Vystavel, and M. Petrenec: Mater. Sci. Eng. A, 2009, vol. 517, pp. 204-11.

    Article  Google Scholar 

  48. 48. Md.S. Bhuiyan, Y. Mutoh, T. Murai, and S. Iwakami: Int. J. Fatigue, 2008, vol. 30, pp. 1756-65.

    Article  Google Scholar 

  49. 49. D.L. Shu: The mechanical properties of engineering materials. China machine Press, Beijing, 2007.

    Google Scholar 

Download references

Acknowledgments

This work was carried out as a collaborative research project supported by General Motors and Shanghai Jiao Tong University. This work was also supported by the Project Funded by China Postdoctoral Science Foundation (2015M571562). The authors are grateful to Drs. Yucong Wang and Anil Sachdev (GM) and Prof. Wengjiang Ding (SJTU) for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Peng.

Additional information

Manuscript submitted November 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Q., Luo, A.A. et al. Size Effect on Magnesium Alloy Castings. Metall Mater Trans A 47, 2686–2704 (2016). https://doi.org/10.1007/s11661-016-3436-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3436-4

Keywords

Navigation