Skip to main content

Advertisement

Log in

A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC)–boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhang: Mater. Sci. Eng. A, 1993, Vol.163, pp. 141–148.

    Article  Google Scholar 

  2. P.Q. Campbell, J.P. Celis, J.R. Roos, and O.Van Der Biest: Wear, 1994, Vol.274, pp. 47–56.

    Article  Google Scholar 

  3. D. Osset, and M. Colin: J. Nuc. Mater, 1991, Vol.183 pp. 161–173.

    Article  Google Scholar 

  4. A.W. Weimer (1997) Carbide, Nitride and Boride materials Synthesis and Processing, 1 st ed. London, Chapmann and Hall, pp. 10–14.

    Google Scholar 

  5. W.C. Johnson: Am. Ceram. Soc. Bull, 2001, Vol. 80, pp. 64–66.

    Google Scholar 

  6. D. Jianxin, Z. Jun, F. Yihua, and D. Zeliang: Cer. Intern. 2002, Vol.28, pp.425–430.

    Article  Google Scholar 

  7. L.S. Sigl: J. Eur. Cer. Soc, 1998, Vol.18, pp. 1521–1529.

    Article  Google Scholar 

  8. A.K. Suri, C. Subramanian, J.K. Sonber, and T.S.R.Ch. Murthy: Int. Mater. Rev, 2010, Vol.55, pp. 4–40.

    Article  Google Scholar 

  9. A.J. Pyzic, and R.T. Nilson: B4C-Cu Cermets and Methods for Making Same, 1992, US Patent 5,145,504.

  10. J.C. LaSalvia: Advances in Ceramic Armor IX: Ceram. Eng. Sci. Proc. 2013, vol. 34(5).

  11. S. Prochazka: Hot Pressed Silicon Carbide, 1974, US Patent 3853566.

  12. K.A. Schwetz, and W. Grellner: J. Less-Common Met, 1981, Vol.82, pp. 37–47.

    Article  Google Scholar 

  13. H. Wei, Y. Zhang, and X. Deng: J. Cer. Proces. Res, 2011, Vol.12, pp. 599–601.

    Google Scholar 

  14. K.A. Schwetz, L.S. Sigl and L. Pfau: J. Solid State Chem, 1997, Vol. 133, pp. 68–76.

    Article  Google Scholar 

  15. F. Thevenot: Key Eng. Mater, 1991, Vol. 56–57, pp. 56–88.

    Google Scholar 

  16. L. Yun-Han, L. Jiang-Tao, G. Chang-Chun, and B. Xin-De: J. Nucl. Mater, 2002, Vol. 303, pp. 188–195.

    Article  Google Scholar 

  17. S. Ordonez, L. Carvajal, V. Martínez, C. Agurto, J. Marin, and L. Olivares: Mater. Sci. Forum, 2005, Vol. 350, pp. 498–499.

    Google Scholar 

  18. A.R. Zurnachyan, S.L. Kharatyan, H.L. Khachatryan, and A.Gh. Kirakosyan: Int. J. Refra. Metal. Hard Mater, 2011, Vol. 29, pp. 250–255.

    Article  Google Scholar 

  19. R. Chaim: Mater. Sci. Engg. A. 2007, Vol. 443, pp. 25–32.

    Article  Google Scholar 

  20. S. Diouf, and A. Molinari: Powd. Tech. 2012, Vol.221, pp. 220–227.

    Article  Google Scholar 

  21. M. Suarez, A. Fernandez, J.L. Menendez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, and T. Kessel: Sintering Applications, In Tech 2013, pp. 319–42.

  22. M. Zhang, W. Zhang, Y. Zhang, and L. Gao: Mater. Sci. Eng. A, 2012, Vol.552, pp. 410–414.

    Article  Google Scholar 

  23. G. Magnani, G. Beltrami, G.L. Minoccari, and L. Pilotti: J. Eur. Cer. Soc, 2001, Vol. 21, pp. 633–638.

    Article  Google Scholar 

  24. D.M. Hulbert, D. Jiang, D.V. Dudina, and A.K. Mukherjee: Int. J. Refra. Metal. Hard Mater, 2009, Vol. 27, pp. 367–375.

    Article  Google Scholar 

  25. S. Hayun, V. Paris, M.P. Dariel, N. Frage, and E. Zaretzky: J. Eur. Cer. Soc, 2009, Vol.29, pp. 3395–3400.

    Article  Google Scholar 

  26. F.C. Sahin, B. Apak, I. Akin, H.E. Kanbur, D.H. Genckan, A. Turan, G. Goller, and O. Yucel: Sol. Stat. Sci, 2012, Vol.14, pp. 1660–1663.

    Article  Google Scholar 

  27. F. Thevenot: J. Eur. Cer. Soc. 1990, Vol. 6, pp. 205–225.

    Article  Google Scholar 

  28. K. Suzuk, and M. Sasaki: J. Eur. Cer. Soc. 2005, Vol. 25, pp. 1611–1618.

    Article  Google Scholar 

  29. E. Gomez, J. Echeberria, I. Iturriza, and F. Castro: J. Eur. Cer. Soc. 2004, Vol. 24, pp. 2895–2903.

    Article  Google Scholar 

  30. X. Du, Y. Wang, Z. Zhang, F. Zhang, W. Wang, and Z. Fu: J. Mater. Sci. Eng. A. 2015, Vol. 636, pp. 133–137.

    Article  Google Scholar 

  31. I.S. Han, K.S. Lee, D.W. Seo, and S.K. Woo: J. Mater. Sci. Lett. 2002, Vol. 21, pp. 703–706.

    Article  Google Scholar 

  32. S. Hayun, N. Frage, and M. P. Dariel: J. Solid State Chem. 2006, Vol. 179, pp. 2875–2879.

    Article  Google Scholar 

  33. Y. Feng,W.Z. Hou, H. Zhang, and L. Liu: J. Am. Ceram. Soc. 2010, Vol. 93, pp. 2956–2959.

    Article  Google Scholar 

  34. R. Telle, and G. Petzow: Pow. Metall. 1986, Vol. 2, pp. 1155–1156.

    Google Scholar 

  35. S. Hayun, D. Rittel, N. Frage, and M.P. Dariel: Mater. Sci.Engg. A. 2008, Vol. 487, pp. 405–409.

    Article  Google Scholar 

  36. S. Hayun, M.P. Dariel, N. Frage, and E. Zaretsky: Act. Mater. 2010, Vol. 58, pp. 1721–1731.

    Article  Google Scholar 

  37. K. Niihara, R. Morena, and D. P. H. Hasselman: J. Mater. Sci. Lett, 1982, Vol. 1, pp.13-16.

    Article  Google Scholar 

  38. M. Blanda, J. Balko, A. Duszova, P. Hvizdos, J. Dusza, and H. Reveron: Acta Met. Slov. Conf, 2013, Vol.3, pp. 270–275.

    Google Scholar 

  39. B.M. Moshtaghioun, A.L. Ortiz, D. Gomez-Garcia, and A. D. Rodriguez: J. Euro. Cer. Soc, 2013, Vol. 33, pp. 1395–1401.

    Article  Google Scholar 

  40. S. Hayun, V. Paris, M.P. Dariel, N. Frage, and E. Zaretzky: J. Europ. Cer. Soc, 2009, Vol. 29, pp. 3395–3400.

    Article  Google Scholar 

  41. M. Uehara, R. Shiraishi, A. Nogami, N. Enomoto, and J. Hojo: J. Europ. Cer. Soc, 2004, Vol. 24, pp. 409–412.

    Article  Google Scholar 

  42. Z. Zhang, X. Du, J. Wang, W. Wang, Y. Wang, and Z. Fu: Powd. Tech, 2014, Vol. 254, PP. 131–136.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Institute of Technology Rourkela, India for providing necessary infrastructural facilities. The authors are also grateful to the National Metallurgical Laboratory, Jamshedpur for providing facilities for high-temperature conventional sintering. The authors are thankful to Professor V. Vamshi Krishna Reddy (Department of Humanities and Social Sciences, NIT Rourkela, India) for language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Chakravarty or D. Chaira.

Additional information

Manuscript submitted January 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahani, P., Karak, S.K., Mishra, B. et al. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods. Metall Mater Trans A 47, 3065–3076 (2016). https://doi.org/10.1007/s11661-016-3401-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3401-2

Keywords

Navigation