Skip to main content
Log in

Effect of Grain Refinement on Jerky Flow in an Al-Mg-Sc Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of microstructure on the manifestations of the Portevin–Le Chatelier (PLC) effect was studied in an Al-Mg-Sc alloy with unrecrystallized, partially recrystallized, and fully recrystallized grain structures. It was found that the extensive grain refinement promotes plastic instability: the temperature–strain rate domain of the PLC effect becomes wider and the critical strain for the onset of serrations decreases. Besides, the amplitude of regular stress serrations observed at room temperature and an intermediate strain rate increases several times, indicating a strong increase of the contribution of solute solution hardening to the overall strength. Moreover, the grain refinement affects the usual sequence of the characteristic types of stress serrations, which characterize the dynamical mechanisms governing a highly heterogeneous unstable plastic flow. Finally, it reduces the strain localization and surface roughness and diminishes the difference between the surface markings detected in the necked area and in the region of uniform elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Portevin, F. LeChatelier: Compt. Rend. Acad. Sci. Paris, 1923, vol. 176, pp. 507-10.

    Google Scholar 

  2. A. Portevin, F. Le Chatelier: Trans. ASST, 1924, vol. 5, pp. 457-78.

    Google Scholar 

  3. H. Aboulfadl, J. Deges, P. Choi and D. Raabe: Acta Mater., 2015, vol. 86, pp. 34-42.

    Article  Google Scholar 

  4. J.M. Robinson and M.P. Shaw: Intern. Mater. Reviews., 1994, vol. 39, pp. 113-22.

    Article  Google Scholar 

  5. H. Halim, D.S. Wilkinson and M. Niewczas: Acta Mater., 2007, vol. 55, pp. 4151-60.

    Article  Google Scholar 

  6. I.J. Polmear: Light Alloys. From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Amsterdam, 2006, p. 421.

    Google Scholar 

  7. M.S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas and L.P. Kubin: Acta Mater., 2002, vol. 50, pp. 2813-24.

    Article  Google Scholar 

  8. J. Kang, D.S. Wilkinson, M. Jain, J.D. Embury, A.J. Beaudoin, S. Kim et al.: Acta Mater., 2006, vol. 54, pp. 209-18.

    Article  Google Scholar 

  9. H. Neuhauser: Patterns, Defects and Material Instabilities, D. Walgref and N.M. Ghoniem, eds., Kluwer Academic Publ, Dordrecht, 1990, pp. 241–77.

    Chapter  Google Scholar 

  10. Y. Estrin and L.P. Kubin: Continuum Models for Materials with Microstructure, H.B. Muhlhaus, ed., Wiley, New York, 1995, pp. 395–450.

    Google Scholar 

  11. R.C. Picu: Acta Mater., 2004, vol. 52, pp. 3447-58.

    Article  Google Scholar 

  12. J. Balik and P. Lukac: Acta Metall. Mater., 1993, vol. 41, pp. 1447-54.

    Article  Google Scholar 

  13. M.R. Stoudt, J.B. Hubbard, M.A. Iadicola and S.W. Banovic: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1611-22.

    Article  Google Scholar 

  14. H. Louche, P. Vacher and R. Arrieux: Mater. Sci. Eng. A, 2005, vol. 404, pp. 188-96.

    Article  Google Scholar 

  15. H. Jiang, Q. Zhang, X. Chen, Zh. Chen, Zh. Jiang, X. Wu et al.: Acta Mater., 2007, vol. 55, pp. 2219-28.

    Article  Google Scholar 

  16. M.A. Lebyodkin and T.A. Lebedkina: Phys. Rev. E, 2008, vol. 77, pp. 026111(1-8).

    Article  Google Scholar 

  17. I.V. Shashkov, M.A. Lebyodkin and T.A. Lebedkina: Acta Mater., 2012, vol. 60, pp. 6842-50.

    Article  Google Scholar 

  18. Sh. Zhao, Ch. Meng, F. Mao, W. Hu and G. Gottstein: Acta Mater., 2014, vol. 76, pp. 54-67.

    Article  Google Scholar 

  19. W. Wen and J.G. Morris: Mater. Sci. Eng. A, 2004, vol. 373, pp. 204-16.

    Article  Google Scholar 

  20. A. Sarkar, P. Barat, P. Mukherjee: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2604-12.

    Article  Google Scholar 

  21. M.A. Muñoz-Morris, C.G. Oca and D.G. Morris: Scr. Metall., 2003, vol. 48, pp. 213-18.

    Article  Google Scholar 

  22. M.V. Markushev and M.Y. Murashkin: Mater. Sci. Eng. A, 2004, vol. 367, pp. 234-42.

    Article  Google Scholar 

  23. T.A. Lebedkina, M.A. Lebyodkin, T.T. Lamark, M. Janeček and Y. Estrin: Mater. Sci. Eng. A, 2014, vol. 615, pp. 7-13.

    Article  Google Scholar 

  24. R. Kapoor, C. Gupta, G. Sharma and J.K. Chakravartty: Scr. Mater., 2005, vol. 53, pp. 1389-93.

    Article  Google Scholar 

  25. M. Wagenhofer, M. Erickson-Natishan, R.W. Armstrong, F.J. Zerilli: Scripta Mater., 1999, vol. 41, pp. 1177–84.

    Article  Google Scholar 

  26. S. Malopheyev and R. Kaibyshev: Mater. Sci. Eng. A, 2014, vol. 620, pp. 246-52.

    Article  Google Scholar 

  27. P. Fernandez-Zelaia, B.S. Adair, V.M. Barker, S.D. Antolovich: Metall. Mater.Trans. A, 2015, vol.46, pp.5596-5609.

    Article  Google Scholar 

  28. D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina, R.O. Kaibyshev: Mater. Sci. Eng. A, 2015, vol. 639. pp. 37-41.

    Article  Google Scholar 

  29. A. Mogucheva, E. Babich, B. Ovsyannikov and R. Kaibyshev: Mater. Sci. Eng. A, 2013, vol. 560, pp. 178-92.

    Article  Google Scholar 

  30. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  Google Scholar 

  31. R. Schwab and V. Ruff: Acta Mater., 2013, vol. 61, pp. 1798-808.

    Article  Google Scholar 

  32. C.Y. Yu, P.W. Kao, C.P. Chang: Acta Mater., 2005, vol. 53, pp. 4019-28.

    Article  Google Scholar 

  33. S.D. Antolovich and R.W. Armstrong: Prog. Mater. Sci., 2014, vol. 59, pp. 1-160.

    Article  Google Scholar 

  34. T.A. Lebedkina and M.A. Lebyodkin: Acta Mater., 2008, vol. 56, pp. 5567-74.

    Article  Google Scholar 

  35. R. Král and P. Lukáč: Mater. Sci. Eng. A, 1997, vol. 234-236, pp. 786-89.

    Article  Google Scholar 

  36. A.H. Cottrell: Phil. Mag., 1953, vol. 44, pp. 829-32.

    Article  Google Scholar 

  37. M.A. Lebyodkin, Y. Brechet, Y. Estrin and L.P. Kubin: Phys. Rev. Lett., 1995, vol. 74, pp. 4758-61.

    Article  Google Scholar 

  38. P.S. Lee, H.R. Piehler, B.L. Adams, G. Jarvis, H. Hampel and A.D. Rollett: J. Mater. Process. Technol., 1998, vol. 80-81, pp. 315-19.

    Article  Google Scholar 

  39. M. Jain, D.J. Lloyd and S.R. Macewen: Int. J. Mech. Sci., 1996, vol. 38, pp. 219-32.

    Article  Google Scholar 

  40. Y.S. Choi, H.R. Piehler and A.D. Rollett: Metall.Mater.Trans A, 2004, vol. 35, pp. 513-24.

    Article  Google Scholar 

  41. S. Raj and T. Langdon: Acta Metall. Mater., 1991, vol. 39, pp. 1817-22.

    Article  Google Scholar 

  42. J. Kang, D.S. Wilkinson, J.D. Embury, M. Jain and A.J. Beaudoin: Scr. Mater., 2005, vol. 53, pp. 499-503.

    Article  Google Scholar 

  43. R. Kaibyshev, O. Sitdikov, A. Goloborodko and T. Sakai: Mater.Sci.Eng. A, 2003, vol. 344, pp. 348-56.

    Article  Google Scholar 

  44. A. Pineau, Phil. Trans. R. Soc. A, 2015, vol. 373: 20140131. (http://dx.doi.org/10.1098/rsta.2014.0131)

    Article  Google Scholar 

  45. V. Bata, E.V. Pereloma, Acta Mater., 2004, vol. 52, pp. 657–665.

    Article  Google Scholar 

  46. I.A. Ovid’ko, A.G. Sheinerman, R.Z. Valiev, Scripta Mater., 2014, vol. 76, pp. 45–48.

    Article  Google Scholar 

  47. R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, Scripta Mater., 2010, vol. 63, pp. 949–952.

    Article  Google Scholar 

  48. P. Hahner: Acta Mater., 1997, vol. 45, pp. 3695-707.

    Article  Google Scholar 

  49. L.P. Kubin, Y. Estrin: Acta Metall. Mater., 1990, vol. 38, pp. 697-708.

    Article  Google Scholar 

  50. Sh. Fu, T. Cheng, Q. Zhang, Q. Hu and P. Cao: Acta Mater., 2012, vol. 60, pp. 6650-56.

    Article  Google Scholar 

  51. J. Røyset, N. Ryum, Inter. Mater. Rev., 2005, vol. 50, pp. 19-44.

    Article  Google Scholar 

  52. M. Jobba, R.K. Mishra and M. Niewczas: Inter.J.Plast., 2015, vol. 65 pp. 43-60.

    Article  Google Scholar 

  53. B. Tian: Mater. Sci. Eng. A, 2003, vol. 349, pp. 272-78.

    Article  Google Scholar 

  54. H. Ait-Amokhtar, S. Boudrahema and C. Fressengeas: Scr. Mater., 2006, vol. 54, pp. 2113-18.

    Article  Google Scholar 

  55. J. Kang, R.K. Mishra, D.S. Wilkinson, O.S. Hopperstad: Phyl. Mag. Lett., 2012, vol. 92, pp. 647-55.

    Article  Google Scholar 

  56. Y. Estrin, M.A. Lebyodkin: Mater.Sci.Eng. A, 2004, vol. 387-389, pp. 195-98.

    Article  Google Scholar 

  57. E. Nembach: Particle Strengthening of Metals and Alloys, Wiley, New York, 1996.

    Google Scholar 

  58. R. Nogueira de Codes, O.S. Hopperstadt, O. Engler, O.G. Lademo, J.D. Embury and A. Benallal: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3358-69.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received from the Ministry of Education and Science, Russia, (Belgorod State University Project No. 11.1533.2014/K) is acknowledged. The main results were obtained by using equipment of Joint Research Center, Belgorod State University. T. L. acknowledges support by the Center of Excellence “LabEx DAMAS” through the French State program “Investment in the future” (Grant ANR-11-LABX-0008-01 of the French National Research Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mogucheva.

Additional information

Manuscript submitted November 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogucheva, A., Yuzbekova, D., Kaibyshev, R. et al. Effect of Grain Refinement on Jerky Flow in an Al-Mg-Sc Alloy. Metall Mater Trans A 47, 2093–2106 (2016). https://doi.org/10.1007/s11661-016-3381-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3381-2

Keywords

Navigation