Skip to main content

Advertisement

Log in

Development of Microstructural Damage in Ni-Based Alloys During Creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-based model alloys with a base composition of Ni-20 mass pct Cr-3 mass pct Mo that were precipitation strengthened by the γ′ phase were studied in regards to their failure mechanisms as part of the fundamental research for achieving a creep rupture strength of 100 MPa at 1023 K (750 °C) and 105 hours. The microstructure, which was interrupted by transient creep, as well as the minimum creep rate and accelerated creep at 1123 K (850 °C) and 80 MPa was observed. The microstructure around the grain boundaries was altered remarkably with strain-induced grain boundary migration, while the γ′ particle size increased linearly inside the grains with increasing temperature and time. Furthermore, the volume fraction of the γ′ phase and the amount of precipitation on the grain boundary were associated with the size of the precipitate-free zone (PFZ), which is a major factor in creep damage. The appropriate precipitations inside the grains and at the grain boundaries were very effective for suppressing PFZ. Consequently, the creep properties can be improved by controlling PFZ in the proximity of grain boundaries for a superior balance of creep strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Yonemura, T. Hamaguchi, H. Semba, and M. Igarashi: First Symposium for Project on Fundamental Studies on Technology for Enhanced Strength and Functions, New energy and industrial technology development organization. 2009, pp. 77–78.

  2. M. Doi: Prog. Mater. Sci., 1996, vol. 40, pp. 79.

    Article  Google Scholar 

  3. H. -A. Kuhn, H. Biermann, T. Ungár and H. Mughrabi: Acta metal. Mater, 1991, vol. 39, 2783-2794.

    Article  Google Scholar 

  4. M. Enomoto and H. Harada: Metall. Trans. A, 1989, vol. 20A, pp. 649-664.

    Article  Google Scholar 

  5. J. -C. Zhao, V. Ravkumar and A. M. Beltran: Meta. Mater. Trans., 2001, vol. 32A, pp. 1271-1282.

    Article  Google Scholar 

  6. T. M. Pollock and A. S. Argon: Acta Metall. Mater., 1994, vol. 42, 1859-1874.

    Article  Google Scholar 

  7. B. F. Dyson and T. B. Gibbons: Acta Metallurgica, 1987, vol. 35, pp. 2355-2369.

    Article  Google Scholar 

  8. Y. Tsukada, Y. Murata, T. Koyama, N. Miura and Y. Kondo: Acta Materialia, 2011, vol. 59, pp. 6378-6386.

    Article  Google Scholar 

  9. M. Yonemura, T. Hamaguchi, H. Semba, and M. Igarashi: 12th Inter. Conf. Creep and Fracture of Engineering Materials and Structures. 2012, pp. A45.

  10. X. Xie, S. Zhao, and J. Dong: 5th Inter. Conf. Adv. in Materials Technology for Fossil Power Plants, Electric Power Research Institute. 2007, pp. 3A–6.

  11. A. J. Ardell, R. B. Nicholson and J. D. Eshelby: Acta Metall., 1966, vol. 15, pp. 1295-1309.

    Article  Google Scholar 

  12. J. Z. Zhua, T. Wanga, A. J. Ardellb, S. H. Zhoua, Z. K. Liua and L. Q. Chena: Acta Mater., 2004, vol. 52, pp. 2837–2845.

    Article  Google Scholar 

  13. R. D. Doherty: Metal Science, 1982, vol. 16, pp. 1-14.

    Article  Google Scholar 

  14. M. Dahlén and L. Winberg, Acta Metallurgia, 1980, vol. 28, pp. 41-50.

    Article  Google Scholar 

  15. A. Porter, B. Ralph, J. Mat. Sci., 1981, vol. 16, pp. 707-713.

    Article  Google Scholar 

  16. G. S. Was: Corrosion, 1990, vol. 46, pp. 319-330.

    Article  Google Scholar 

  17. T. Ogura, S. Hirosawa and T. Sato: Materials Science Forum, 2007, vol. 561-565 pp. 235-238.

    Article  Google Scholar 

  18. Y. L. Chiu and A. H. W. Ngan: Meta. Mater. Trans., 2000, vol. 31A, pp. 3179-3186.

    Article  Google Scholar 

  19. L. Wang, G. Xie, J. Zhang and L. H. Lou, Scripta Materialia, 2006, vol. 55, pp. 457-460.

    Article  Google Scholar 

  20. T. Terada, T. Matsuo, and M. Kikuchi: in Aspects of High Temperature Deformation and Fracture, Y. Hosoi, ed., The Japan Institute of Metals and Materials, 1993, p. 27.

  21. M. Yonemura, T. Hamaguchi, H. Semba and M. Igarashi: CAMP-ISIJ, 2008, vol. 21, pp. 1349.

    Google Scholar 

  22. T. B. Gibbons and B. E. Hopkins: Metal Science Journal, 1971, vol. 5, pp. 233.

    Article  Google Scholar 

Download references

Acknowledgments

Some of the work in this study was conducted as a part of the research activities of the “Fundamental Studies on Technologies for Steel Materials with Enhanced Strength and Functions” by the Consortium of The Japan Research and Development Center for Metals (JRCM). We are also grateful for the financial support provided by New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuharu Yonemura.

Additional information

Manuscript submitted June 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonemura, M., Semba, H. & Igarashi, M. Development of Microstructural Damage in Ni-Based Alloys During Creep. Metall Mater Trans A 47, 1898–1905 (2016). https://doi.org/10.1007/s11661-016-3346-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3346-5

Keywords

Navigation