Skip to main content
Log in

In Situ Measurement and Prediction of Stresses and Strains During Casting of Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Modeling the thermo-mechanical behavior of steel during casting is of great importance for the prediction of distortions and cracks. In this study, an elasto–visco–plastic constitutive law is calibrated with mechanical measurements from casting experiments. A steel bar is solidified in a sand mold and strained by applying a force to bolts that are embedded in the two ends of the bar. The temporal evolutions of the restraint force and the bar’s length change are measured in situ. The experiments are simulated by inputting calculated transient temperature fields into a finite element stress analysis that employs the measured forces as boundary conditions. The thermal strain predictions are validated using data from experiments without a restraint. Initial estimates of the constitutive model parameters are obtained from available mechanical test data involving reheated steel specimens. The temperature dependence of the strain rate sensitivity exponent is then adjusted until the measured and predicted length changes of the strained bars agree. The resulting calibrated mechanical property dataset is valid for the high-temperature austenite phase of steel. The data reveal a significantly different mechanical behavior during casting compared to what the stress–strain data from reheated specimens show.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Feltham: Phys. Soc. Proc., 1953, vol. 66(406B), pp. 865–83.

    Article  Google Scholar 

  2. P.J. Wray and M.F. Holmes: Metall. Mater. Trans. A, 1975, vol. 6A, no. 6, pp. 1189–96.

    Article  Google Scholar 

  3. P.J. Wray: Metall. Mater. Trans. A, 1982, vol. 13A, no. 1, pp. 125-34.

    Article  Google Scholar 

  4. T. Suzuki, K.H. Tacke, K. Wunnenberg, and K. Schwerdtfeger: Ironmaking Steelmaking, 1988, vol. 15, no. 2, pp. 90-100.

    Google Scholar 

  5. L. Anand: J. Eng. Mater. Tech., 1982, vol. 104, no. 1, pp. 12-17.

    Article  Google Scholar 

  6. P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. Wang: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 903-18.

    Article  Google Scholar 

  7. C. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp 1151-72.

    Article  Google Scholar 

  8. S. Koric and B.G. Thomas: Int. J. Num. Met. Eng., 2006, vol. 66, pp. 1955-89.

    Article  Google Scholar 

  9. S. Koric and B.G. Thomas: 2007 Abaqus Users Conference, Paris, 2007.

  10. S. Koric and B.G. Thomas: J. Mater. Processing Tech., 2008, vol. 197, pp. 408-18.

    Article  Google Scholar 

  11. S. Koric and B.G. Thomas: Int. J. Num. Met. Eng., 2009, vol. 78, pp. 1-31.

    Article  Google Scholar 

  12. J. Sengupta, C. Ojeda, and B.G. Thomas: Int. J. Cast Met. Res., 2009, vol. 22(1–4), pp. 8–14.

    Article  Google Scholar 

  13. A.E. Huespe, A. Cardona, N. Nigro and V. Fachinotti: J. Mater. Processing Tech., 2000, vol. 102, pp. 143-52.

    Article  Google Scholar 

  14. A.E. Huespe, A. Cardona and V. Fachinotti: Comp. Meth. Appl. Mech. Eng., 2000, vol. 182, pp. 439-55.

    Article  Google Scholar 

  15. C. Zhang, M. Bellet, M. Bobadilla, H. Shen, and B. Liu, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2304-17.

    Article  Google Scholar 

  16. R.N. Parkins and A. Cowan: Proceedings of the Institute of British Foundation, Paper No. 1062, 1953, p. A101-9.

  17. C. Monroe and C. Beckermann: 61st Steel Founders Society of America Technical and Operating Conference, Paper No. 5.7, Steel Founders’ Society of America, Chicago, IL, 2006.

  18. P. Ackermann, J.D. Wagniere, and W. Kurz: Mat. Sci. Eng., 1985, vol. 75, pp. 79-86.

    Article  Google Scholar 

  19. M. Rowan, B.G. Thomas, R. Pierer, and C. Bernhard: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 837-51.

    Article  Google Scholar 

  20. MAGMASOFT® v4.6, Magma GmbH, Aachen.

  21. J. Miettinen: Metall. Mater. Trans. B, 1997, vol. 28, no. 2, pp. 281-97.

    Article  Google Scholar 

  22. D. Galles and C. Beckermann: 66th Steel Founders Society of America Technical and Operating Conference, Paper No. 5.2, Steel Founders’ Society of America, Chicago, IL, 2012.

  23. K.D. Carlson and C. Beckermann: Int. J. Cast Metals Res., vol. 25, 2012, pp. 75-92.

    Article  Google Scholar 

  24. C. Monroe: Ph.D. Thesis, University of Iowa, Iowa City, IA, 2009.

  25. M. Pokorny, C. Monroe, and C. Beckermann: Int. J. Metalcast., 2008, vol. 2, no. 4, pp. 41-53.

    Article  Google Scholar 

  26. J. Bluhm and R. DeBoer: ZAMMJ. Appl. Math. Mech., 1997, vol. 77, no. 8, pp. 563–77.

    Article  Google Scholar 

  27. A.P. Roberts and E.J. Garboczi: J. American Ceramic Soc., vol. 83, no. 12, 2000, pp. 3041-48.

    Article  Google Scholar 

  28. R.A. Hardin and C. Beckermann: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2992-3006.

    Article  Google Scholar 

  29. ABAQUS®, Abaqus, Inc., Providence, RI.

  30. J.C. Simo and T.J.R. Hughes: Computational Inelasticity, Springer-Verlag New York Inc., New York, NY, 1998.

    Google Scholar 

  31. C. Martin, M. Braccini, and M. Suery: Int. J. Plast., 2002, vol. 15, pp. 981-1008.

    Article  Google Scholar 

  32. A.C.F. Cocks: J. Mech. Phys. Solids, 1989, vol. 37, no. 6, pp. 693-715.

    Article  Google Scholar 

  33. V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 23, no. 1, pp. 157-69.

    Article  Google Scholar 

  34. E.B. Marin and D.L. McDowell: Comput. Struct., 1997, vol. 63, no. 3, pp. 579-600.

    Article  Google Scholar 

  35. B.G. Thomas: ISIJ Int., 1995, vol. 35, no. 6, pp. 737-743.

    Article  Google Scholar 

  36. C.A. Monroe, C. Beckermann, and J. Klinkhammer: Modelling of Casting, Welding, and Advanced Solidification Processes XII, S.L. Cockcroft and D.M. Maijer, Wiley, Warrendale, PA, 2009, pp. 643–49.

  37. A. Stangeland, A. Mo, O. Nielsen, D. Eskin and M. M’Hamdi: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2903-15

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored through the Defense Logistics Agency through the American Metal Consortium and the Steel Founders’ Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beckermann.

Additional information

Manuscript submitted February 10, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galles, D., Beckermann, C. In Situ Measurement and Prediction of Stresses and Strains During Casting of Steel. Metall Mater Trans A 47, 811–829 (2016). https://doi.org/10.1007/s11661-015-3184-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3184-x

Keywords

Navigation