Skip to main content
Log in

Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) thermo-mechanical model is developed considering the phase transformation occurring during the friction stir welding (FSW) of steel, and the simulated result is compared with both the measured temperature distribution during FSW and the microstructural changes after FSW. The austenite grain size (AGS) decreases significantly because of the frictional heat and severe plastic deformation generated during FSW, and the decreased AGS accelerates the diffusional phase transformation during FSW. The ferrite phase, one of the diffusional phases, is developed mainly in mild steel, whereas the bainite phase transformation occurs significantly in high-strength steel with large hardenability. Additionally, transformation-induced heat is observed mainly in the stir zone during FSW. The measured temperature distribution and phase fraction agree fairly well with the predicted data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. S. Sato, M. Urata, H. Kokawa, K. Ikeda and M. Enomoto, Scripta Mater 2001, vol. 45, pp. 109-14

    Article  Google Scholar 

  2. Y. S. Sato, Y. Kurihara, S. H. C. Park, H. Kokawa and N. Tsuji, Scripta Mater 2004, vol. 50, pp. 57-60

    Article  Google Scholar 

  3. S. H. Kang, H. S. Chung, H. N. Han, K. H. Oh, C. G. Lee and S. J. Kim, Scripta Mater 2007, vol. 57, pp. 17-20.

    Article  Google Scholar 

  4. J. H. Cho, D. E. Boyce and P. R. Dawson, Mater. Sci. Eng. A Struct. 2005, vol. 398, pp. 146-63

    Article  Google Scholar 

  5. J. H. Cho and P. R. Dawson, Metall Mater Trans A 2006, vol. 37A, pp. 1147-64.

    Article  Google Scholar 

  6. E. W. Hart, J. Eng. Mater. Technol. Trans. ASME 1976, vol. 98, pp. 193-202.

    Article  Google Scholar 

  7. R. Nandan, G. G. Roy, T. J. Lienert and T. DebRoy, Sci. Technol. Weld. Join. 2006, vol. 11, pp. 526-37.

    Article  Google Scholar 

  8. R. Nandan, G. G. Roy, T. J. Lienert and T. Debroy, Acta Mater 2007, vol. 55, pp. 883-95.

    Article  Google Scholar 

  9. H. H. Cho, S. T. Hong, J. H. Roh, H. S. Choi, S. H. Kang, R. J. Steel and H. N. Han, Acta Mater 2013, vol. 61, pp. 2649-61.

    Article  Google Scholar 

  10. Y. S. Sato, T. W. Nelson and C. J. Sterling, Acta Mater 2005, vol. 53, pp. 637-45.

    Article  Google Scholar 

  11. Y. S. Sato, H. Yamanoi, H. Kokawa and T. Furuhara, Scripta Mater 2007, vol. 57, pp. 557-60.

    Article  Google Scholar 

  12. H. H. Cho, H. N. Han, S. T. Hong, J. H. Park, Y. J. Kwon, S. H. Kim and R. J. Steel, Mater. Sci. Eng. A-Struct. 2011, vol. 528, pp. 2889-94.

    Article  Google Scholar 

  13. M. A. M. Hossain, M. T. Hasan, S. T. Hong, M. Miles, H. H. Cho and H. N. Han, Met Mater Int 2013, vol. 19, pp. 1243-50.

    Article  Google Scholar 

  14. H. H. Cho, S. H. Kang, S. H. Kim, K. H. Oh, H. J. Kim, W. S. Chang and H. N. Han, Mater Design 2012, vol. 34, pp. 258-67.

    Article  Google Scholar 

  15. C. M. Sellars, Mater Sci Tech Ser 1985, vol. 1, pp. 325-32.

    Article  Google Scholar 

  16. M. Suehiro, K. Sato, Y. Tsukano, H. Yada, T. Senuma and Y. Matsumura, Iron Steel Inst. Jpn. 1987, vol. 27, pp. 439-45

    Article  Google Scholar 

  17. P. D. Hodgson and R. K. Gibbs, Isij Int 1992, vol. 32, pp. 1329-38.

    Article  Google Scholar 

  18. K. Karhausen and R. Kopp, Steel Res 1992, vol. 63, pp. 247-56

    Google Scholar 

  19. O. Kwon, Isij Int 1992, vol. 32, pp. 350-58

    Article  Google Scholar 

  20. J. Yanagimoto and J. S. Liu, Isij Int 1999, vol. 39, pp. 171-75.

    Article  Google Scholar 

  21. C.J. Smithells, W.F. Gale, T.C. Totemeier: Smithells Metals Reference Book. 8th ed. (Elsevier Butterworth-Heinemann, Amsterdam, 2004).

    Google Scholar 

  22. M. Song and R. Kovacevic, Proc Inst Mech Eng B-J Eng 2003, vol. 217, pp. 73-85.

    Article  Google Scholar 

  23. W. Zhang, G. G. Roy, J. W. Elmer and T. DebRoy, J Appl Phys 2003, vol. 93, pp. 3022-33.

    Article  Google Scholar 

  24. T. Sheppard and D. S. Wright, Met Technol 1979, vol. 6, pp. 215-23.

    Article  Google Scholar 

  25. P. F. Kozlowski, B. G. Thomas, J. A. Azzi and W. Hao, Metall Trans A 1992, vol. 23, pp. 903-18.

    Article  Google Scholar 

  26. James L. Kuester and Joe H. Mize: Optimization Techniques with Fortran. (McGraw-Hill, New York, 1973).

    Google Scholar 

  27. P. Perzyna and W. Wojno, Arch. Mech. 1966, vol. 18, pp. 85-99.

    Google Scholar 

  28. Y. G. Cho, Y. R. Im, J. K. Lee, D. W. Suh, S. J. Kim and H. N. Han, Metall Mater Trans A 2011, vol. 42A, pp. 2094-06.

    Article  Google Scholar 

  29. H. H. Cho, Y. G. Cho, Y. R. Im, J. K. Lee, J. H. Kwak and H. N. Han, J Mater Process Technol 2010, vol. 210, pp. 907-13.

    Article  Google Scholar 

  30. H. N. Han and S. H. Park, Mater Sci Technol Ser 2001, vol. 17, pp. 721-26.

    Google Scholar 

  31. P. A. Manohar, T. Chandra and C. R. Killmore, Isij Int 1996, vol. 36, pp. 1486-93

    Article  Google Scholar 

  32. P. A. Manohar and T. Chandra, Isij Int 1998, vol. 38, pp. 766-74

    Article  Google Scholar 

  33. M. C. Zhao, K. Yang, F. R. Xiao and Y. Y. Shan, Mater Sci Eng A-Struct 2003, vol. 355, pp. 126-136

    Article  Google Scholar 

  34. H. H. Cho, Y. G. Cho, D. W. Kim, S. J. Kim, W. B. Lee and H. N. Han, Isij Int 2014, vol. 54, pp. 1646-52.

    Article  Google Scholar 

  35. B. Dutta and C. M. Sellars, Mater Sci Technol Ser 1987, vol. 3, pp. 197-206.

    Article  Google Scholar 

  36. X. K. Zhu and Y. J. Chao, J Mater Process Tech 2004, vol. 146, pp. 263-72.

    Article  Google Scholar 

  37. H. Schmidt, J. Hattel and J. Wert, Model Simul Mater Sci 2004, vol. 12, pp. 143-57.

    Article  Google Scholar 

  38. X. He, T. DebRoy and P. W. Fuerschbach, J Appl Phys 2004, vol. 96, pp. 4547-55.

    Article  Google Scholar 

  39. P. P. Suikkanen, C. Cayron, A. J. DeArdo and L. P. Karjalainen, J Mater Sci Technol 2011, vol. 27, pp. 920-30.

    Article  Google Scholar 

  40. J. Y. Kang, D. H. Kim, S. I. Baik, T. H. Ahn, Y. W. Kim, H. N. Han, K. H. Oh, H. C. Lee and S. H. Han, Isij Int 2011, vol. 51, pp. 130-36.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by Basic Science Research Programme through the National Research Foundation in Korea funded by the Ministry of Science, ICT, and Future Planning (NRF-2013R1A2A2A01008806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Nam Han.

Additional information

Manuscript submitted on April 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, HH., Kim, DW., Hong, ST. et al. Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel. Metall Mater Trans A 46, 6040–6051 (2015). https://doi.org/10.1007/s11661-015-3177-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3177-9

Keywords

Navigation