Skip to main content
Log in

Microstructure and Mechanical Properties of Friction Stir Spot-Welded IF/DP Dissimilar Steel Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interstitial-free (IF) and dual-phase (DP) steel sheets of 1-mm thickness were joined by friction stir spot welding with a convex shoulder tool. Two different combinations were used; one with IF as top sheet (IF/DP) and another with DP as top sheet (DP/IF). Material intermixing between the overlapping sheets takes place within the stirred zone. The truncated sheet interface curls upward into the top sheet, more so in case of IF/DP, due to lower resistance offered by the top (IF) sheet to the upward migrating bottom (DP) sheet material. Material from the IF steel contains ferrite phases, while that from the DP steel contains acicular ferrite and lath martensite. Under quasi-static loading, the crack passes along the dissimilar interface and into the top sheet thickness, resulting in pull-out failure. Under cyclic loading, the failure is brought about by the initiation of kinked fatigue cracks and their subsequent propagation through the top and bottom sheet thickness. The dominant fatigue crack moves through the reduced top sheet thickness. The mechanical performance of DP/IF is better than IF/DP owing to higher strength of the stirred zone. The mechanical performances of the dissimilar joints are intermediate to that of the similar material joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Steel Types. Available: http://www.worldautosteel.org/steel-basics/steel-types/. Accessed 13 Nov 2014.

  2. [2] U. Dilthey and L. Stein: Sci. Technol. Weld. Joining, 2006, vol. 11, pp. 135 - 142.

    Article  Google Scholar 

  3. ULSAB. Available: http://www.worldautosteel.org/projects/ulsab/. Accessed 26 Nov 2014.

  4. Steel: the Basics. Available: http://www.tatasteelautomotive.com/file_source/StaticFiles/Microsites/Automotive/Publications/Book%20of%20steel/Steel_the_basics.pdf. Accessed 1 Dec 2014.

  5. . B. Hilditch, J. G. Speer, and D. K. Matlock: Mater. Des., 2007, vol. 28, pp. 2566–2576.

    Article  Google Scholar 

  6. [6] M. Pouranvari and S. P. H. Marashi: Sci. Technol. Weld. Joining, 2013, vol. 18, pp. 361-403.

    Article  Google Scholar 

  7. B. Yan, H. Zhu, S.H. Lalam, S. Baczkowski, and T. Coon: SAE, 2004, SAE Techical Paper, 2004-01-0511.

  8. R. W. Rathbun, D. K. Matlock, and J. G. Speer: Weld. J., 2003, vol. 28, pp. 207s– 218s.

    Google Scholar 

  9. X. Sun, E. V. Stephens, and M. A. Khaleel: Eng. Failure Anal., 2008, vol. 15, pp. 356–367.

    Article  Google Scholar 

  10. [10] S. Ferrasse, P. Verrier, and F. Meesemaecker: Weld. World, 1998, vol. 41, pp. 177-195.

    Google Scholar 

  11. K. Yamazaki, K. Sato, and Y. Tokunaga: Weld. Int., 2000, vol. 14, pp. 533-541.

    Article  Google Scholar 

  12. M. Pouranvari, S. M. Mousavizadeh, S. P. H. Marashi, M. Goodarzi, and M. Ghorbani: Mater. Des., 2011, vol. 32, pp. 1390–1398.

    Article  Google Scholar 

  13. M. Vural and A. Akkus: J. Mater. Process. Technol., 2004, vol. 153–154, pp. 1-6.

    Article  Google Scholar 

  14. M. Alenius, P. Pohjanne, M. Somervuori, and H. Hanninen: Weld. J., 2006, vol. 85: 305s–13s.

    Google Scholar 

  15. M.S. Khan, S.D. Bhole, D.L. Chen, E. Biro, G. Boudreau, and J.V. Deventer: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 616–25.

    Article  Google Scholar 

  16. G. Weber and S. Göklü: Weld. World, 2006, vol. 50, pp. 3-12.

    Article  Google Scholar 

  17. M. Pouranvari: Mater. Sci. Eng. A, 2012, vol. 546, pp. 129–138.

    Article  Google Scholar 

  18. R. Sakano, K. Murakami, K. Yamashita, T. Hyoe, M. Fujimoto, M. Inuzuka, U. Nagao, and H. Kashiki: Third International Symposium of Friction Stir Welding, Kobe, Japan, 2001.

  19. Z. Shen, X. Yang, Z. Zhang, L. Cui, and Y. Yin: Mater. Des., 2013, vol. 49, pp. 181-191.

    Article  Google Scholar 

  20. [20] Y. F. Sun, H. Fujii, and N. Tsuji: : Mater. Sci. Eng. A, 2013, vol. 585, pp. 17–24.

    Article  Google Scholar 

  21. U. Suhuddin, V. Fischer, F. Kroeff, and J.F.D. Santos: Mater. Sci. Eng. A, 2014, vol. 590, pp. 384–89.

    Article  Google Scholar 

  22. [22] S. H. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, and P. Wanjara: Mater. Sci. Eng. A, 2012, vol. 556, pp. 500-509.

    Article  Google Scholar 

  23. [23] S. H. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, and P. Wanjara: Mater. Sci. Eng. A, 2013, vol. 562, pp. 53–60.

    Article  Google Scholar 

  24. Z. Feng, M.L. Santella, S.A. David, R.J. Steel, S.M. Packer, T. Pan, M. Kuo, and R.S. Bhatnagar: SAE, SAE Tech. Pap, 2005-01-1248, 2005.

  25. [25] Y. Hovanski, M. L. Santella, and G. J. Grant: Scr. Mater., 2007, vol. 57, pp. 873-876.

    Article  Google Scholar 

  26. M. Santella, Y. Hovanski, A. Frederick, G. Grant, and M. Dahl: Sci. Technol. Weld. Joining, 2010, vol. 15, pp. 271-278.

    Article  Google Scholar 

  27. M. I. Khan, M. L. Kuntz, P. Su, A. Gerlich, T. North, and Y. Zhou: Sci. Technol. Weld. Joining, 2007, vol. 12, pp. 175-182.

    Article  Google Scholar 

  28. R. Ohashi, M. Fujimoto, S. Mironov, Y. S. Sato, and H. Kokawa: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2033-2035.

    Article  Google Scholar 

  29. K. Aota and K. Ikeuchi: Weld. Int., 2009, vol. 23, pp. 572 - 580.

    Article  Google Scholar 

  30. R. Sarkar, T. K. Pal, and M. Shome: Sci. Technol. Weld. Joining, 2014, vol. 19, pp. 436-442.

    Article  Google Scholar 

  31. R. Ohashi, M. Fujimoto, S. Mironov, Y. S. Sato, and H. Kokawa: Sci. Technol. Weld. Joining, 2009, vol. 14, pp. 221-227.

    Article  Google Scholar 

  32. A. Gerlich, G. Avramovic-Cingara, and T. H. North: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2773-2786.

    Article  Google Scholar 

  33. T. J. Lienert, W. L. Stellwag, B. B. Grimmett, and R. W. Warke: Weld. J., 2003, vol. 82, pp. 1s-9s.

    Article  Google Scholar 

  34. Q. Yang, S. Mironov, Y. S. Sato, and K. Okamoto: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4389–4398.

    Article  Google Scholar 

  35. P. Su, A. Gerlich, T. H. North, and G. J. Bendzsak: Sci. Technol. Weld. Joining, 2006, vol. 11, pp. 61-71.

    Article  Google Scholar 

  36. W. Yuan, R. S. Mishra, B. Carlson, R. Verma, and R. K. Mishra: Mater. Sci. Eng. A, 2012, vol. 543, pp. 200–209.

    Article  Google Scholar 

  37. [37] D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng, and M. L. Santella: Mater. Sci. Eng. A, 2006, vol. 441, pp. 79–96.

    Article  Google Scholar 

  38. [38] S. Chen and X. Jiang: Mater. Sci. Eng. A, 2014, vol. 612, pp. 267–277.

    Article  Google Scholar 

  39. P. C. Lin, J. Pan, and T. Pan: Int. J. Fatigue, 2008, vol. 30, pp. 74–89.

    Article  Google Scholar 

  40. P. C. Lin, J. Pan, and T. Pan: Int. J. Fatigue, 2008, vol. 30, pp. 90–105.

    Article  Google Scholar 

  41. [41] V. X. Tran, J. Pan, and T. Pan: Int. J. Fatigue, 2008, vol. 30, pp. 2175–2190.

    Article  Google Scholar 

  42. [42] V. X. Tran, J. Pan, and T. Pan: Int. J. Fatigue, 2010, vol. 32, pp. 1022–1041.

    Article  Google Scholar 

  43. D. A. Wang and C. H. Chen: J. Mater. Process. Technol., 2009, vol. 209, pp. 367–375.

    Article  Google Scholar 

  44. S. Hassanifard, M. Mohammadpour, and H. A. Rashid: Mater. Des., 2014, vol. 53, pp. 962-971.

    Article  Google Scholar 

  45. A. M. S. Malafaia, M. T. Milan, M. F. Oliveira, and D. Spinelli: Procedia Eng., 2010, vol. 2, pp. 1815–1821.

    Article  Google Scholar 

  46. Y. Uematsu and K. Tokaji: Sci. Technol. Weld. Joining, 2009, vol. 14, pp. 62-71.

    Article  Google Scholar 

  47. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, J.G. Kerbiguet: Mater. Sci. Eng. A, 2010, 527, pp. 4505– 4509.

    Article  Google Scholar 

  48. S.F. Tebyani and K. Dehghani: Int. J. Adv. Manuf. Technol., 2015, DOI:10.1007/s00170-015-6788-9

  49. M.A.M. Hossain, M.T.H.S. Hong, M. Miles, H. Cho, and H.N. Han: Int. J. Mater. Prod. Technol., 2014, vol. 48, pp. 179–92.

    Article  Google Scholar 

  50. S. Zimmer, L. Langlois, J. Laye, and R. Bigot: Int. J. Adv. Manuf. Technol., 2010, vol. 47, pp. 201-215.

    Article  Google Scholar 

  51. V. X. Tran, J. Pan, and T. Pan: J. Mater. Process. Technol., 2009, vol. 209, pp. 3724–3739.

    Article  Google Scholar 

  52. S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–265.

    Article  Google Scholar 

  53. C.B. Dallam and D.L. Olson: Weld. J., 1989, vol. 68, pp. 198-205.

    Google Scholar 

  54. A. Arora, T. DebRoy, and H. K. D. H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020–2028.

    Article  Google Scholar 

  55. C. M. Chen and R. Kovacevic: Int. J. Mach. Tool Manu., 2003, vol. 43, pp. 1319–1326.

    Article  Google Scholar 

  56. S. Mandal, J. Rice, and A. A. Elmustafa: J. Mater. Process. Technol., 2008, vol. 203, pp. 411-419.

    Article  Google Scholar 

  57. P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet, and D. Allehaux: J. Mater. Process. Technol., 2006, vol. 171, pp. 348–357.

    Article  Google Scholar 

  58. P. Rodrigues, A.S. Paula, and M.F. Campos: 6th Brazilian Conference on Manufacturing Engineering, Caxias do Sul, RS, 2011.

  59. H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto: Int. J. Mach. Tool Manu., 2009, vol. 49, pp. 814–823.

    Article  Google Scholar 

  60. S. Zhang: Int. J.Fracture, 1997, vol. 88, pp. 167–185.

    Article  Google Scholar 

  61. G. Wang and M. E. Barkey: Trans. ASME, 2005, vol. 127, pp. 310-317.

    Google Scholar 

  62. H. Gaul, G. Weber, and M. Rethmeier: Int. J. Fatigue, 2011, vol. 33, pp. 740–745

    Article  Google Scholar 

  63. D. Shang, M. Barkey, Y. Wang, and T. C. Lim: Int. J. Fatigue, 2003, vol. 25, pp. 311–316

    Article  Google Scholar 

  64. X. Long and S. Khanna: Int. J. Fatigue, 2007, vol. 29, pp. 879-886.

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the Council of Scientific and Industrial Research (CSIR), Steel Development Fund (Government of India), and Tata Steel Ltd. The authors would like to thank Mr. V. Sharma and Mr. N. K. Mahato of Tata Steel R&D for their valuable assistance in the characterization process and Mr. P. Banerjee of Welding Technology Centre, Jadavpur University for his continuous guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Sarkar.

Additional information

Manuscript submitted January 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Sengupta, S., Pal, T.K. et al. Microstructure and Mechanical Properties of Friction Stir Spot-Welded IF/DP Dissimilar Steel Joints. Metall Mater Trans A 46, 5182–5200 (2015). https://doi.org/10.1007/s11661-015-3116-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3116-9

Keywords

Navigation