Skip to main content

Advertisement

Log in

The Mechanism of High Ductility for Novel High-Carbon Quenching–Partitioning–Tempering Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, a novel quenching–partitioning–tempering (Q–P–T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q–P–T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q–P–T steel is revealed as follows. Much more retained austenite existing in Q–P–T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q–P–T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q–P–T steel affect the further improvement of ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A-P Pierman, O Bouaziz, T Pardoen, PJ Jacques and L Brassart, Acta Mater. 2014, vol. 73, pp. 298–311.

    Article  Google Scholar 

  2. M. Sarwar and R. Priestner, J Mater Sci 1996, vol. 31, pp. 2091–95.

    Article  Google Scholar 

  3. BC De Cooman, Curr. Opin. Solid State Mater. Sci. 2004, vol. 8, pp. 285–303.

    Article  Google Scholar 

  4. PJ Jacques, Curr. Opin. Solid State Mater. Sci. 2004, vol. 8, pp. 259–65.

    Article  Google Scholar 

  5. L. Li, P. Wollants, Y.L. He, B.C. De Cooman, X.C. Wei and Z.Y. Xu, Acta Metall. Sin. 2009, vol. 16, pp. 457–65.

    Google Scholar 

  6. C. Ouchi, ISIJ Int. 2001, vol. 41, pp. 542–53.

    Article  Google Scholar 

  7. Jacques PJ, Furnémont Q, Lani F, Pardoen T, Delannay F, Acta Mater. 2007, vol. 55, pp. 3681–93.

    Article  Google Scholar 

  8. F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques and T. Pardoen, Acta Mater. 2007, vol. 55, pp. 3695–705.

    Article  Google Scholar 

  9. A.K. Srivastava, G. Jha, N. Gope and S.B. Singh, Mater. Charact. 2006, vol. 57, pp. 127–35.

    Article  Google Scholar 

  10. J. Mahieu, B.C. De Cooman, and J. Maki, Metall. Mater. Trans. A 2002, vol. 33A, pp. 2573–80.

    Article  Google Scholar 

  11. J. Speer, D.K. Matlock, B.C. De Cooman and J.G. Schroth, Acta Mater. 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  12. J.G. Speer, D.V. Edmonds, F.C. Rizzo and D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 2004, vol. 8, pp. 219–37.

    Article  Google Scholar 

  13. DV Edmonds, K He, FC Rizzo, BC De Cooman, DK Matlock and JG Speer, Mater. Sci. Eng.,A 2006, vol. 438, pp. 25–34.

    Article  Google Scholar 

  14. K. Zhang, W. Xu, Z. Guo, Y. Rong, M. Wang and H. Dong, Acta Metall. Sin. 2011, vol. 47, pp. 489–96.

    Google Scholar 

  15. T.Y. Hsu and Z.Y. Xu, Mater. Sci. Forum, (Trans Tech Publ: 2007) 2007, vols. 561–565, pp 2283–86.

    Article  Google Scholar 

  16. S. Zhou, K. Zhang, Y. Wang, J.F. Gu and Y.H. Rong, Mater. Sci. Eng. A 2011, vol. 528, pp. 8006–12.

    Article  Google Scholar 

  17. S. Zhou, K. Zhang, Y. Wang, J.F. Gu and Y.H. Rong, Metall. Mater. Trans. A 2012, vol. 43A, pp. 1026–34.

    Article  Google Scholar 

  18. Y. Wang, K. Zhang, Z. Guo, N. Chen and Y. Rong, Mater. Sci. Eng. A 2012, vol. 552, pp. 288–94.

    Article  Google Scholar 

  19. Y. Wang, K. Zhang, Z. Guo, N. Chen and Y. Rong, Acta Metall. Sin. 2012, vol. 48, pp. 641–48.

    Article  Google Scholar 

  20. K. Zhang, M. Zhang, Z. Guo, N. Chen and Y. Rong, Mater. Sci. Eng. A 2011, vol. 528, pp. 8486–91.

    Article  Google Scholar 

  21. V.F. Zackay, E.R. Parker, D. Fahr and R. Busch, ASM Trans. Q. 1967, vol. 60, pp. 252–59.

    Google Scholar 

  22. D. Webster, ASM Trans. Q. 1968, vol. 61, pp. 816–28.

    Google Scholar 

  23. F. Rui, Z. Meihan, C. Nailu, Z. Xunwei and R. Yonghua, Acta Metall. Sin. 2014, vol. 50, pp. 498–506.

    Google Scholar 

  24. R.F. Zhang, J. Wang, I.J. Beyerlein and T.C. Germann, Scripta Mater. 2011, vol. 65, pp. 1022–25.

    Article  Google Scholar 

  25. J Wang, A Misra, RG Hoagland and JP Hirth, Acta Mater. 2012, vol. 60, pp. 1503–13.

    Article  Google Scholar 

  26. G. Lasko, D. Saraev, S. Schmauder and P. Kizler, Comput. Mater. Sci. 2005, vol. 32, pp. 418–25.

    Article  Google Scholar 

  27. S. Shao and S.N. Medyanik, Modell. Simul. Mater. Sci. Eng. 2010, vol. 18, p. 055010.

    Article  Google Scholar 

  28. S.-J. Kim, C.G. Lee, I. Choi and S. Lee, Metall. Mater. Trans. A 2001, vol. 32A, pp. 505–14.

    Article  Google Scholar 

  29. J.H. Jang, I.G. Kim and H.K.D.H. Bhadeshia, Comput. Mater. Sci. 2009, vol. 44, pp. 1319–26.

    Article  Google Scholar 

  30. B.-J. Lee, CALPHAD 1992, vol. 16, pp. 121–49.

    Article  Google Scholar 

  31. Mikhail Aleksandrovich Krivoglaz, 1969.

  32. W. Woo, L. Balogh, T. Ungár, H. Choo and Z. Feng, Mater. Sci. Eng. A 2008, vol. 498, pp. 308–13.

    Article  Google Scholar 

  33. W. Li, W. Xu, X. Wang and Y. Rong, J. Alloy. Compd. 2009, vol. 474, pp. 546–50.

    Article  Google Scholar 

  34. A.R. Stokes, Proc. Phys. Soc. 1948, vol. 61, p. 382.

    Article  Google Scholar 

  35. R.O. Ritchie, Nat. Mater. 2011, vol. 10, pp. 817–22.

    Article  Google Scholar 

  36. J. Gubicza, N. Chinh, Z. Horita, T. Langdon, Mater. Sci. Eng. A 2011, vol. 387, pp. 55–59.

    Google Scholar 

  37. G. Krauss, Metall. Mater. Trans. A 2001, vol. 32A, pp. 861–77.

    Article  Google Scholar 

Download references

Acknowledgments

The work is financially supported by the National Natural Science Foundation of China (Nos. 51371117 and 51401121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nailu Chen.

Additional information

Manuscript submitted January 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Liu, Y., Hao, Q. et al. The Mechanism of High Ductility for Novel High-Carbon Quenching–Partitioning–Tempering Martensitic Steel. Metall Mater Trans A 46, 4047–4055 (2015). https://doi.org/10.1007/s11661-015-3021-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3021-2

Keywords

Navigation