Skip to main content
Log in

Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Baldev Raj and T. Jayakumar: J. Nucl. Mater., 2011, vol. 417(1-3), pp. 72-76.

    Article  Google Scholar 

  2. R.L. Klueh and E.E. Bloom: Nucl. Eng. Des./Fusion, 1985, vol. 2, pp. 383-389.

    Article  Google Scholar 

  3. R. Lindau and M. Schirra: Fusion Eng. Des., 2001, vol. 58-59, pp. 781-785.

    Article  Google Scholar 

  4. A. Alamo, J.C. Brachet, A. Castaing, C. Lepoittevin and F. Barcelo: J. Nucl. Mater., 1998, vol. 258-263, pp. 1228-1235.

    Article  Google Scholar 

  5. B. Van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau and G. LeMorois: Fusion Eng. Des., 2003, vol. 69, pp. 197-203.

    Article  Google Scholar 

  6. J.F. Salavy, L.V. Boccaccini, P. Chaudhuri, S. Cho, M. Enoeda, L.M. Giancarli, R.J. Kurtz, T.Y. Luo, K. Bhanu Sankara Rao and C.P.C. Wong: Fusion Eng. Des., 2010, vol. 85, pp. 1896-1902.

    Article  Google Scholar 

  7. M. Tamura, H. Hayakawa, A. Yoshitake, A. Hishinuma and T. Kondo: J. Nucl. Mater., 1988, vol. 155-157, pp. 620-625.

    Article  Google Scholar 

  8. R.L. Klueh: Int. Mater. Rev., 2005, vol. 50(5), pp. 287-310.

    Article  Google Scholar 

  9. F. Abe, T. Noda, H. Araki and S. Nakazawa: J. Nucl. Mater., 1991, vol. 179-181, pp. 663-666.

    Article  Google Scholar 

  10. R.L. Klueh, D.J. Alexander and M.A. Sokolov: J. Nucl. Mater., 2002, vol. 304, pp. 139-152.

    Article  Google Scholar 

  11. L. Schaefer and M. Schirra: J. Nucl. Mater., 1999, vol. 271-272, pp. 455-458.

    Article  Google Scholar 

  12. Y. Wei, W. Wei, S. Yi-Yin, and Y. Ke: Front. Mater. Sci., 2013, vol. 7(1), pp. 1-27.

    Article  Google Scholar 

  13. S. Ghosh: J. Mater. Sci., 2010, vol. 45, pp. 1823-1829.

    Article  Google Scholar 

  14. R.L. Klueh, N. Hashimoto and M.A. Sokolov: ASTM Spec. Tech. Publ., 2004, vol. 1447, pp. 376-390.

    Google Scholar 

  15. T. Hasegawa, Y. Tomita and A. Kohyama: J. Nucl. Mater., 1998, vol. 258-263, pp. 1153-1157.

    Article  Google Scholar 

  16. P. Aubert, F. Tavassoli, M. Reith and Y. Poitevin: J. Nucl. Mater., 2011, vol. 417, pp. 43-50.

    Article  Google Scholar 

  17. A. Alamo, A. Castaing, A. Fontes and P. Wident: J. Nucl. Mater., 2000, vol. 283-287, pp. 1192-1195.

    Article  Google Scholar 

  18. H. Hayakawa, A. Yoshitake, M. Tamura, S. Natsume, A. Gotoh and A. Hishinuma: J. Nucl. Mater., 1991, vol. 179-181, pp. 693-696.

    Article  Google Scholar 

  19. Duck Young Ku, Seungjin Oh, Mu-Young Ahn, In-Keun Yu, Duck-Hoi Kim, Seungyon Cho, Im-Sub Choi, and Ki-Bum Kwon: J. Nucl. Mater., 2011, vol. 417(1), pp. 67-71.

    Google Scholar 

  20. Z. Jiang, L. Ren, J. Huang, X. Ju, H. Wu, Q. Huang and Y. Wu: Fusion Eng. Des., 2010, vol. 85, pp. 1903-1908.

    Article  Google Scholar 

  21. M. Vijayalakshmi, S. Saroja, V. Thomas Paul, R. Mythili and V.S. Raghunathan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 161-174.

    Article  Google Scholar 

  22. V. Thomas Paul, S. Saroja, P. Hariharan, A. Rajadurai, and M. Vijayalakshmi: J. Mater. Sci., 2007, vol. 42, pp. 700–13.

  23. D.J. Allen and S.J. Brett: Proc. International Symposium on Case Histories on Integrity and Failures in Industry, Milan, Italy, 1999, p. 133.

  24. J.A. Francis, W. Mazur and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22(12), pp. 1387-1395.

    Article  Google Scholar 

  25. S. Zheng, Q. Wu, Q. Haung, S. Liu and Y. Han: Fusion Eng. Des., 2011, vol. 86, pp. 2616-2619.

    Article  Google Scholar 

  26. B. Arivazhagan, G. Srinivasan, S.K. Albert and A.K. Bhaduri: Fusion Eng. Des., 2011, vol. 86, pp. 192-197.

    Article  Google Scholar 

  27. Q. Lu, W. Xu and S. van der Zwaag: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6067-6074.

    Article  Google Scholar 

  28. R. Foret, B. Zlamal and J. Sopousek: Welding J., 2006, vol. 85, pp. 211s-217s.

    Google Scholar 

  29. L. Kaufman: Computer Calculation of Phase Diagrams, Academic Press, NewYork, USA, 1970.

    Google Scholar 

  30. N. Saunders, X. Li, P. Miodownik, and J. Ph. Schille: in Proc. Symp. Mater. Des. Approaches Exper., 2001, pp. 185–97.

  31. R.L. Klueh: J. Nucl. Mater., 2008, vol. 378, pp. 159-66.

    Article  Google Scholar 

  32. Ravi Kirana, S. Raju, R. Mythili, S. Saroja, T. Jayakumar, and E. Rajendra Kumar: Steel Res. Inter., 2015, DOI: 10.1002/srin.201400183.

  33. U.R. Kattner: JOM, 1997, vol. 49(12), pp. 14-19.

    Article  Google Scholar 

  34. H.L. Lucas, J. Weiss and E.Th. Henig: CALPHAD, 1982, vol. 6, pp. 229-251.

    Article  Google Scholar 

  35. S.G. Hong, W.B. Lee and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202-207.

    Article  Google Scholar 

  36. John Hald: Mater. Technol., 1996, vol. 67(9), pp. 369-374.

    Google Scholar 

  37. V. Thomas Paul, S. Saroja, S.K. Albert, T. Jayakamar, and E. Rajendra Kumar: Mater. Charat., 2014, vol. 96, pp. 213–24.

  38. Q. Zhu, Y.C. Lei, X.Z. Chen, W.J. Ren. X. Ju and Y.M. Ye: Fusion Eng. Des., 2011, vol. 86, pp. 407-411.

    Article  Google Scholar 

  39. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM MON03, 2001.

  40. D.J. Alexander, P.J. Maziasz, and C.R. Brinkman: Microstructures and Mechanical Properties of Aging Material, Warrendale, PA, 1993, pp. 343–348.

  41. H. Okamura, R. Ohtani, K. Saito, K. Kimura, R. Ishii, K. Fujiyama, S. Hongo, T. Iseki and H. Uchida: Nucl. Engg. Des., 1999, vol. 193, pp. 243-254.

    Article  Google Scholar 

  42. G. Chakraborty, C.R. Das, S.K. Albert, A.K. Bhaduri, V. Thomas Paul, G. Panneerselvam, and A. Dasgupta: Mater. Charat., 2014, vol. 100, pp. 81–87.

  43. T. Sawai, K. Shiba and A. Hishinuma: J. Nucl. Mater., 2000, vol. 283-287, pp. 657-661.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Dr. P.R. Vasudeva Rao, Director, IGCAR, Dr. T. Jayakumar, Director MMG, and Dr. M. Vijayalakshmi, Associate Director PMG for their support and encouragement during the period of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sudha.

Additional information

Manuscript submitted November 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas Paul, V., Sudha, C. & Saroja, S. Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel. Metall Mater Trans A 46, 3378–3392 (2015). https://doi.org/10.1007/s11661-015-2954-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2954-9

Keywords

Navigation